Koons Emily K, Chang Shaojie, Missert Andrew D, Gong Hao, Thorne Jamison E, Hoodeshenas Safa, Rajiah Prabhakar Shantha, McCollough Cynthia H, Leng Shuai
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
Med Phys. 2025 Jul;52(7):e17874. doi: 10.1002/mp.17874. Epub 2025 May 8.
Coronary computed tomography angiography (cCTA) is a widely used noninvasive diagnostic exam to assess patients for coronary artery disease (CAD). However, the spatial resolution of most CT scanners is limited due to the use of energy-integrating detectors (EIDs).
To develop a convolutional neural network (Improved LUMEN visualization through Artificial super-resoluTion imagEs (ILUMENATE)) informed by photon-counting-detector (PCD)-CT to improve EID-CT image resolution and determine its impact on cCTA.
With IRB approval, 30 patients undergoing clinically indicated cCTA were scanned with EID-CT (SOMATOM Force, Siemens Healthineers, Forchheim, Germany) and subsequently with ultra-high-resolution (UHR) PCD-CT (NAEOTOM Alpha, Siemens Healthineers) on the same day. ILUMENATE was trained on eight patient PCD-CT datasets (67,890 patch pairs with 90% for training (61,101), 10% reserved for validation (6,789)) and applied to 22 unseen EID-CT cases. Spatial resolution was evaluated using line profiles and percent diameter stenosis quantified with a severity score assigned. Two experienced radiologists, blinded to image type, selected preferred series and scored images for overall quality, sharpness, and noise comparing original EID-CT and ILUMENATE output.
Visual assessment and line profiles showed substantial resolution improvement with ILUMENATE. Percent diameter stenosis was significantly reduced (mean ± standard deviation: 4.42% ± 4.82%) using ILUMENATE (p < 0.001) with nine lesions shifting down in severity score. Readers preferred ILUMENATE images in 22/22 cases and scored ILUMENATE superiorly for overall quality, sharpness, and noise (p < 0.05).
ILUMENATE enhanced image resolution, resulting in improved overall image quality, reduced calcium blooming artifacts, and improved lumen visibility in cCTA exams performed using EID-CT. This could potentially allow for improved accessibility to UHR image quality, allowing for more accurate assessment of CAD.
冠状动脉计算机断层扫描血管造影(cCTA)是一种广泛应用的非侵入性诊断检查,用于评估患者的冠状动脉疾病(CAD)。然而,由于使用能量积分探测器(EID),大多数CT扫描仪的空间分辨率有限。
开发一种受光子计数探测器(PCD)-CT启发的卷积神经网络(通过人工超分辨率图像改善管腔可视化(ILUMENATE)),以提高EID-CT图像分辨率并确定其对cCTA的影响。
经机构审查委员会(IRB)批准,对30例接受临床指征cCTA检查的患者同一天先进行EID-CT(SOMATOM Force,西门子医疗,德国福希海姆)扫描,随后进行超高分辨率(UHR)PCD-CT(NAEOTOM Alpha,西门子医疗)扫描。ILUMENATE在8例患者的PCD-CT数据集上进行训练(67,890个图像块对,90%用于训练(61,101),10%留作验证(6,789)),并应用于22例未见过的EID-CT病例。使用线轮廓评估空间分辨率,并通过分配的严重程度评分量化直径狭窄百分比。两名经验丰富的放射科医生在不知图像类型的情况下,选择更喜欢的系列,并对原始EID-CT和ILUMENATE输出的图像进行整体质量、清晰度和噪声评分。
视觉评估和线轮廓显示ILUMENATE显著提高了分辨率。使用ILUMENATE时,直径狭窄百分比显著降低(平均值±标准差:4.42%±4.82%)(p<0.001),9个病变的严重程度评分下降。在22/22例病例中,阅片者更喜欢ILUMENATE图像,并在整体质量、清晰度和噪声方面对ILUMENATE的评分更高(p<0.05)。
ILUMENATE提高了图像分辨率,从而改善了整体图像质量,减少了钙化光晕伪影,并提高了使用EID-CT进行的cCTA检查中的管腔可见性。这可能潜在地提高获得超高分辨率图像质量的机会,从而更准确地评估CAD。