Health Research Institute, University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica.
National Water Laboratory of the Costa Rican Institute of Aqueducts and Sewerage, P.O.Box 1097-1200, Cartago, Costa Rica.
Sci Total Environ. 2023 Nov 1;897:165393. doi: 10.1016/j.scitotenv.2023.165393. Epub 2023 Jul 9.
This study presents the development of a SARS-CoV-2 detection method for domestic wastewater and river water in Costa Rica, a middle-income country in Central America. Over a three-year period (November to December 2020, July to November 2021, and June to October 2022), 80 composite wastewater samples (43 influent and 37 effluent) were collected from a Wastewater Treatment Plant (SJ-WWTP) located in San José, Costa Rica. Additionally, 36 river water samples were collected from the Torres River near the SJ-WWTP discharge site. A total of three protocols for SARS-CoV-2 viral concentration and RNA detection and quantification were analyzed. Two protocols using adsorption-elution with PEG precipitation (Protocol A and B, differing in the RNA extraction kit; n = 82) were used on wastewater samples frozen prior to concentration, while wastewater (n = 34) collected in 2022 were immediately concentrated using PEG precipitation. The percent recovery of Bovine coronavirus (BCoV) was highest using the Zymo Environ Water RNA (ZEW) kit with PEG precipitation executed on the same day as collection (mean 6.06 % ± 1.37 %). It was lowest when samples were frozen and thawed, and viruses were concentrated using adsorption-elution and PEG concentration methods using the PureLink™ Viral RNA/DNA Mini (PLV) kit (protocol A; mean 0.48 % ± 0.23 %). Pepper mild mottle virus and Bovine coronavirus were used as process controls to understand the suitability and potential impact of viral recovery on the detection/quantification of SARS-CoV-2 RNA. Overall, SARS-CoV-2 RNA was detected in influent and effluent wastewater samples collected in 2022 but not in earlier years when the method was not optimized. The burden of SARS-CoV-2 at the SJ-WWTP decreased from week 36 to week 43 of 2022, coinciding with a decline in the national COVID-19 prevalence rate. Developing comprehensive nationwide surveillance programs for wastewater-based epidemiology in low-middle-income countries involves significant technical and logistical challenges.
本研究开发了一种用于哥斯达黎加(中美洲的一个中等收入国家)的生活污水和河水的 SARS-CoV-2 检测方法。在三年的时间里(2020 年 11 月至 12 月、2021 年 7 月至 11 月和 2022 年 6 月至 10 月),从位于哥斯达黎加圣何塞的一个废水处理厂(SJ-WWTP)收集了 80 个复合废水样本(43 个进水和 37 个出水)。此外,从 SJ-WWTP 排放口附近的托雷斯河收集了 36 个河水样本。共分析了三种 SARS-CoV-2 病毒浓缩和 RNA 检测与定量的方案。在进行浓缩之前,使用两种带有聚乙二醇沉淀的吸附洗脱法方案(方案 A 和 B,提取试剂盒不同;n=82)对冷冻的废水样本进行处理,而 2022 年收集的废水(n=34)则立即使用聚乙二醇沉淀进行浓缩。使用聚乙二醇沉淀当天进行的 Zymo 环境水样 RNA(ZEW)试剂盒处理时,牛冠状病毒(BCoV)的回收率最高(平均 6.06%±1.37%)。当样品冷冻和解冻时,使用吸附洗脱和聚乙二醇浓缩方法并用 PureLink™病毒 RNA/DNA 迷你试剂盒(方案 A)处理时,回收率最低(平均 0.48%±0.23%)。使用辣椒轻斑驳病毒和牛冠状病毒作为过程对照,以了解病毒回收对 SARS-CoV-2 RNA 检测/定量的适用性和潜在影响。总体而言,在未优化方法的情况下,未在 2022 年之前的年份检测到进水和出水废水中的 SARS-CoV-2 RNA,但在 2022 年的这两年中检测到了。2022 年第 36 周至第 43 周,SJ-WWTP 的 SARS-CoV-2 负荷量下降,这与全国 COVID-19 患病率的下降相吻合。在中低收入国家建立全面的全国性基于废水的流行病学监测计划涉及重大的技术和后勤挑战。