Suppr超能文献

异步光驱动微转子中的动力学自旋轨道耦合。

Hydrodynamic spin-orbit coupling in asynchronous optically driven micro-rotors.

机构信息

Center for Soft Matter Research, Department of Physics, New York University, 726 Broadway Avenue, New York, NY, 10003, USA.

Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218, USA.

出版信息

Nat Commun. 2023 Jul 11;14(1):4114. doi: 10.1038/s41467-023-39582-3.

Abstract

Vortical flows of rotating particles describe interactions ranging from molecular machines to atmospheric dynamics. Yet to date, direct observation of the hydrodynamic coupling between artificial micro-rotors has been restricted by the details of the chosen drive, either through synchronization (using external magnetic fields) or confinement (using optical tweezers). Here we present a new active system that illuminates the interplay of rotation and translation in free rotors. We develop a non-tweezing circularly polarized beam that simultaneously rotates hundreds of silica-coated birefringent colloids. The particles rotate asynchronously in the optical torque field while freely diffusing in the plane. We observe that neighboring particles orbit each other with an angular velocity that depends on their spins. We derive an analytical model in the Stokes limit for pairs of spheres that quantitatively explains the observed dynamics. We then find that the geometrical nature of the low Reynolds fluid flow results in a universal hydrodynamic spin-orbit coupling. Our findings are of significance for the understanding and development of far-from-equilibrium materials.

摘要

旋流中的旋转颗粒描述了从分子机器到大气动力学的相互作用。然而,迄今为止,由于所选驱动器的细节,人工微旋转器之间的水动力耦合的直接观察受到限制,要么通过同步(使用外部磁场),要么通过限制(使用光学镊子)。在这里,我们提出了一种新的主动系统,它可以揭示自由转子中旋转和平移的相互作用。我们开发了一种非限制的圆偏振光束,可以同时旋转数百个涂有二氧化硅的双折射胶体。在光学扭矩场中,粒子以异步方式旋转,同时在平面内自由扩散。我们观察到相邻的粒子以角速度相互环绕,该角速度取决于它们的自旋。我们在 Stokes 极限下为球体对推导了一个解析模型,该模型定量地解释了观察到的动力学。然后,我们发现低雷诺数流体流动的几何性质导致了通用的流体动力自旋轨道耦合。我们的发现对于理解和开发远离平衡的材料具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e4/10336088/3e890d1a413d/41467_2023_39582_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验