O-GlcNAcylation 通过胎儿重演营养过剩信号与衰竭心脏。

Foetal recapitulation of nutrient surplus signalling by O-GlcNAcylation and the failing heart.

机构信息

Baylor Heart and Vascular Institute, Dallas, TX, USA.

Imperial College, London, UK.

出版信息

Eur J Heart Fail. 2023 Aug;25(8):1199-1212. doi: 10.1002/ejhf.2972. Epub 2023 Jul 20.

Abstract

The development of the foetal heart is driven by increased glucose uptake and activation of mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1α (HIF-1α), which drives glycolysis. In contrast, the healthy adult heart is governed by sirtuin-1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK), which promote fatty-acid oxidation and the substantial mitochondrial ATP production required for survival in a high-workload normoxic environment. During cardiac injury, the heart recapitulates the foetal signalling programme, which (although adaptive in the short term) is highly deleterious if sustained for long periods of time. Prolonged increases in glucose uptake in cardiomyocytes under stress leads to increased flux through the hexosamine biosynthesis pathway; its endproduct - uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) - functions as a critical nutrient surplus sensor. UDP-GlcNAc drives the post-translational protein modification known as O-GlcNAcylation, which rapidly and reversibly modifies thousands of intracellular proteins. Both O-GlcNAcylation and phosphorylation act at serine/threonine residues, but whereas phosphorylation is regulated by hundreds of specific kinases and phosphatases, O-GlcNAcylation is regulated by only two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which adds or removes GlcNAc (N-acetylglucosamine), respectively, from target proteins. Recapitulation of foetal programming in heart failure (regardless of diabetes) is accompanied by marked increases in O-GlcNAcylation, both experimentally and clinically. Heightened O-GlcNAcylation in the heart leads to impaired calcium kinetics and contractile derangements, arrhythmias related to activation of voltage-gated sodium channels and Ca /calmodulin-dependent protein kinase II, mitochondrial dysfunction, and maladaptive hypertrophy, microvascular dysfunction, fibrosis and cardiomyopathy. These deleterious effects can be prevented by suppression of O-GlcNAcylation, which can be achieved experimentally by upregulation of AMPK and SIRT1 or by pharmacological inhibition of OGT or stimulation of OGA. The effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on the heart are accompanied by reduced O-GlcNAcylation, and their cytoprotective effects are reportedly abrogated if their action to suppress O-GlcNAcylation is blocked. Such an action may represent one of the many mechanisms by which enhanced AMPK and SIRT1 signalling following SGLT2 inhibition leads to cardiovascular benefits. These observations, taken collectively, suggest that UDP-GlcNAc functions as a critical nutrient surplus sensor (which acting in concert with mTOR and HIF-1α) can promote the development of cardiomyopathy.

摘要

胎儿心脏的发育是由葡萄糖摄取的增加和哺乳动物雷帕霉素靶蛋白(mTOR)和缺氧诱导因子-1α(HIF-1α)的激活驱动的,这促进了糖酵解。相比之下,健康的成人心脏受沉默信息调节因子-1(SIRT1)和腺苷单磷酸激活蛋白激酶(AMPK)的调控,它们促进脂肪酸氧化和大量线粒体 ATP 的产生,以维持在高工作量的正常氧环境中的生存。在心脏损伤过程中,心脏会重新启动胎儿信号通路,虽然在短期内是适应性的,但如果长期持续,就会产生极大的损害。在应激下,心肌细胞中葡萄糖摄取的持续增加会导致己糖胺生物合成途径通量增加;其终产物尿嘧啶二磷酸 N-乙酰葡萄糖胺(UDP-GlcNAc)作为关键的营养过剩传感器发挥作用。UDP-GlcNAc 驱动被称为 O-GlcNAc 化的翻译后蛋白修饰,它可快速、可逆地修饰数千种细胞内蛋白。O-GlcNAc 化和磷酸化都作用于丝氨酸/苏氨酸残基,但磷酸化受数百种特定的激酶和磷酸酶调控,而 O-GlcNAc 化仅受两种酶调控,即 O-GlcNAc 转移酶(OGT)和 O-GlcNAcase(OGA),它们分别向靶蛋白添加或去除 GlcNAc(N-乙酰葡萄糖胺)。心力衰竭(无论是否合并糖尿病)中胎儿程序的重现伴随着 O-GlcNAc 化的显著增加,这在实验和临床中都得到了证实。心脏中 O-GlcNAc 化的增加会导致钙动力学受损和收缩功能障碍、与电压门控钠通道和钙/钙调蛋白依赖性蛋白激酶 II 激活相关的心律失常、线粒体功能障碍、适应性肥大、微血管功能障碍、纤维化和心肌病。通过上调 AMPK 和 SIRT1 或通过药理学抑制 OGT 或刺激 OGA,可抑制 O-GlcNAc 化,从而预防这些有害影响。钠-葡萄糖共转运蛋白 2(SGLT2)抑制剂对心脏的作用伴随着 O-GlcNAc 化的减少,如果其抑制 O-GlcNAc 化的作用被阻断,其细胞保护作用就会被消除。这种作用可能是 SGLT2 抑制后增强的 AMPK 和 SIRT1 信号传导导致心血管益处的众多机制之一。这些观察结果表明,UDP-GlcNAc 作为关键的营养过剩传感器(与 mTOR 和 HIF-1α协同作用)可以促进心肌病的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索