Song Zheng, Henze Lara, Casar Christian, Schwinge Dorothee, Schramm Christoph, Fuss Johannes, Tan Likai, Prinz Immo
Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
J Leukoc Biol. 2023 Nov 24;114(6):630-638. doi: 10.1093/jleuko/qiad069.
Accurately identifying γδ T cells in large single-cell RNA sequencing (scRNA-seq) datasets without additional single-cell γδ T cell receptor sequencing (sc-γδTCR-seq) or CITE-seq (cellular indexing of transcriptomes and epitopes sequencing) data remains challenging. In this study, we developed a TCR module scoring strategy for human γδ T cell identification (i.e. based on modular gene expression of constant and variable TRA/TRB and TRD genes). We evaluated our method using 5' scRNA-seq datasets comprising both sc-αβTCR-seq and sc-γδTCR-seq as references and demonstrated that it can identify γδ T cells in scRNA-seq datasets with high sensitivity and accuracy. We observed a stable performance of this strategy across datasets from different tissues and different subtypes of γδ T cells. Thus, we propose this analysis method, based on TCR gene module scores, as a standardized tool for identifying and reanalyzing γδ T cells from 5'-end scRNA-seq datasets.
在没有额外的单细胞γδT细胞受体测序(sc-γδTCR-seq)或CITE-seq(转录组和表位测序的细胞索引)数据的情况下,在大型单细胞RNA测序(scRNA-seq)数据集中准确识别γδT细胞仍然具有挑战性。在本研究中,我们开发了一种用于人类γδT细胞识别的TCR模块评分策略(即基于恒定和可变TRA/TRB及TRD基因的模块化基因表达)。我们使用包含sc-αβTCR-seq和sc-γδTCR-seq的5' scRNA-seq数据集作为参考来评估我们的方法,并证明它可以在scRNA-seq数据集中以高灵敏度和准确性识别γδT细胞。我们观察到该策略在来自不同组织和不同γδT细胞亚型的数据集中表现稳定。因此,我们提出这种基于TCR基因模块评分的分析方法,作为从5'端scRNA-seq数据集中识别和重新分析γδT细胞的标准化工具。