Suppr超能文献

整合炎症生物标志物分析和人工智能支持的基于图像的分析,以鉴定肠道纤维化的药物靶点。

Integrating inflammatory biomarker analysis and artificial-intelligence-enabled image-based profiling to identify drug targets for intestinal fibrosis.

机构信息

Takeda Development Center Americas, Inc., San Diego, CA 92121, USA.

Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.

出版信息

Cell Chem Biol. 2023 Sep 21;30(9):1169-1182.e8. doi: 10.1016/j.chembiol.2023.06.014. Epub 2023 Jul 11.

Abstract

Intestinal fibrosis, often caused by inflammatory bowel disease, can lead to intestinal stenosis and obstruction, but there are no approved treatments. Drug discovery has been hindered by the lack of screenable cellular phenotypes. To address this, we used a scalable image-based morphology assay called Cell Painting, augmented with machine learning algorithms, to identify small molecules that could reverse the activated fibrotic phenotype of intestinal myofibroblasts. We then conducted a high-throughput small molecule chemogenomics screen of approximately 5,000 compounds with known targets or mechanisms, which have achieved clinical stage or approval by the FDA. By integrating morphological analyses and AI using pathologically relevant cells and disease-relevant stimuli, we identified several compounds and target classes that are potentially able to treat intestinal fibrosis. This phenotypic screening platform offers significant improvements over conventional methods for identifying a wide range of drug targets.

摘要

肠纤维化,常由炎症性肠病引起,可导致肠狭窄和梗阻,但目前尚无批准的治疗方法。药物研发受到缺乏可筛选的细胞表型的阻碍。为了解决这个问题,我们使用了一种名为细胞绘画的可扩展的基于图像的形态测定法,并结合机器学习算法,来识别能够逆转肠道肌成纤维细胞激活纤维化表型的小分子。然后,我们对大约 5000 种具有已知靶点或作用机制的化合物进行了高通量小分子化学基因组筛选,这些化合物已经达到了临床阶段或 FDA 批准。通过整合形态分析和 AI,使用与病理相关的细胞和与疾病相关的刺激物,我们鉴定出了一些可能能够治疗肠纤维化的化合物和靶类。与传统方法相比,这种表型筛选平台在鉴定广泛的药物靶点方面有显著的改进。

相似文献

1
Integrating inflammatory biomarker analysis and artificial-intelligence-enabled image-based profiling to identify drug targets for intestinal fibrosis.
Cell Chem Biol. 2023 Sep 21;30(9):1169-1182.e8. doi: 10.1016/j.chembiol.2023.06.014. Epub 2023 Jul 11.
2
Development of a chemogenomics library for phenotypic screening.
J Cheminform. 2021 Nov 24;13(1):91. doi: 10.1186/s13321-021-00569-1.
3
Deep learning in image-based phenotypic drug discovery.
Trends Cell Biol. 2023 Jul;33(7):538-554. doi: 10.1016/j.tcb.2022.11.011. Epub 2023 Jan 7.
4
AI-Powered Microfluidics: Shaping the Future of Phenotypic Drug Discovery.
ACS Appl Mater Interfaces. 2024 Jul 31;16(30):38832-38851. doi: 10.1021/acsami.4c07665. Epub 2024 Jul 17.
5
Recent applications of artificial intelligence in RNA-targeted small molecule drug discovery.
Expert Opin Drug Discov. 2024 Apr;19(4):415-431. doi: 10.1080/17460441.2024.2313455. Epub 2024 Feb 6.
6
Artificial intelligence in small molecule drug discovery from 2018 to 2023: Does it really work?
Bioorg Chem. 2023 Dec;141:106894. doi: 10.1016/j.bioorg.2023.106894. Epub 2023 Sep 27.
7
A high-content, in vitro cardiac fibrosis assay for high-throughput, phenotypic identification of compounds with anti-fibrotic activity.
J Mol Cell Cardiol. 2020 May;142:105-117. doi: 10.1016/j.yjmcc.2020.04.002. Epub 2020 Apr 8.
8
Role of Artificial Intelligence in Drug Discovery and Target Identification in Cancer.
Curr Drug Deliv. 2024;21(6):870-886. doi: 10.2174/1567201821666230905090621.
10
Enabling Systemic Identification and Functionality Profiling for Cdc42 Homeostatic Modulators.
bioRxiv. 2024 Jan 8:2024.01.05.574351. doi: 10.1101/2024.01.05.574351.

引用本文的文献

1
Single-cell morphological tracking of cell states to identify small-molecule modulators of liver differentiation.
iScience. 2025 Jan 23;28(2):111871. doi: 10.1016/j.isci.2025.111871. eCollection 2025 Feb 21.
2
Microprotein-encoding RNA regulation in cells treated with pro-inflammatory and pro-fibrotic stimuli.
BMC Genomics. 2024 Nov 5;25(1):1034. doi: 10.1186/s12864-024-10948-1.
3
Subpopulations of fibroblasts derived from human iPS cells.
Commun Biol. 2024 Jun 18;7(1):736. doi: 10.1038/s42003-024-06419-8.
4
Fibrosis in IBD: from pathogenesis to therapeutic targets.
Gut. 2024 Apr 5;73(5):854-866. doi: 10.1136/gutjnl-2023-329963.

本文引用的文献

2
Genome-wide CRISPR Screening to Identify Drivers of TGF-β-Induced Liver Fibrosis in Human Hepatic Stellate Cells.
ACS Chem Biol. 2022 Apr 15;17(4):918-929. doi: 10.1021/acschembio.2c00006. Epub 2022 Mar 11.
3
The Molecular Mechanisms of Intestinal Inflammation and Fibrosis in Crohn's Disease.
Front Physiol. 2022 Feb 11;13:845078. doi: 10.3389/fphys.2022.845078. eCollection 2022.
4
Therapeutic Targeting of Intestinal Fibrosis in Crohn's Disease.
Cells. 2022 Jan 26;11(3):429. doi: 10.3390/cells11030429.
5
Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis.
Acta Pharm Sin B. 2022 Jan;12(1):18-32. doi: 10.1016/j.apsb.2021.07.023. Epub 2021 Jul 29.
6
Chemokine-Based Therapeutics for the Treatment of Inflammatory and Fibrotic Convergent Pathways in COVID-19.
Curr Pathobiol Rep. 2021;9(4):93-105. doi: 10.1007/s40139-021-00226-0. Epub 2021 Dec 8.
7
8
Fibroblast pathology in inflammatory diseases.
J Clin Invest. 2021 Oct 15;131(20). doi: 10.1172/JCI149538.
9
FGF/FGFR signaling: From lung development to respiratory diseases.
Cytokine Growth Factor Rev. 2021 Dec;62:94-104. doi: 10.1016/j.cytogfr.2021.09.002. Epub 2021 Sep 20.
10
Single cell morphology distinguishes genotype and drug effect in Hereditary Spastic Paraplegia.
Sci Rep. 2021 Aug 17;11(1):16635. doi: 10.1038/s41598-021-95995-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验