Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
Laboratoire de physique Corpusculaire IN2P3/ENSICAEN/CNRS UMR 6534, Normandie Université Centre François Baclesse, Caen, France.
Int Rev Cell Mol Biol. 2023;378:157-200. doi: 10.1016/bs.ircmb.2023.03.005. Epub 2023 Apr 21.
Radiotherapy (RT) is a fundamental treatment at the locoregional or oligometastatic stages of cancer. In various tumors, RT effects may be optimized using synergistic combinations that enhance tumor response. Innovative strategies have been designed that explore the radiation mechanisms, at the physical, chemical and biological levels, to propose precision RT approaches. They consist in combining RT with immunotherapy to revert radiation immunosuppressive effects or to enhance radiation-induced immune defenses against the tumor to favor immunogenic cell death. Radiotherapy-activated nanoparticles are another innovation. By increasing radiation response in situ, nanoparticles improve tumor control locally, and can trigger systemic immune reactions that may be exploited to improve the systemic efficacy of RT. Strong clinical evidence of improved outcomes is now available for combinations of RT and immunotherapy on one hand and RT and nanoparticles on the other hand. The triple combination of RT, immunotherapy and nanoparticles is promising in terms of tolerance, local and systemic anti-tumor control. Yet, significant challenges remain to unravel the complexity of the multiscale mechanisms underlying response to this combination and their associated parameters. Such parameters include patient characteristics, tumor bulk and histology, radiation technique, energy, dose, fractionation, immunotherapy targets and predictive biomarkers, nanoparticle type, size, delivery (intratumoral/intravenous), distribution. The temporal combination is another critical parameter. The mechanisms of response of the combinatorial approaches are reviewed, with a focus on underlying mechanisms based on preclinical, translational and clinical studies. Opportunities for translation of current understanding into precision RT trials combined with immunotherapy and nanoparticles are also discussed.
放疗(RT)是癌症局部或寡转移阶段的基本治疗方法。在各种肿瘤中,通过协同组合可以优化 RT 效果,从而增强肿瘤的反应。已经设计了创新的策略来探索辐射机制,包括物理、化学和生物学水平,以提出精确的 RT 方法。这些策略包括将 RT 与免疫疗法相结合,以逆转辐射免疫抑制作用,或增强辐射诱导的针对肿瘤的免疫防御,以促进免疫原性细胞死亡。放疗激活的纳米颗粒是另一种创新。通过原位增加辐射反应,纳米颗粒可以改善局部肿瘤控制,并且可以引发全身免疫反应,这些反应可以被利用来提高 RT 的全身疗效。目前,RT 与免疫疗法联合应用和 RT 与纳米颗粒联合应用均有改善疗效的强有力的临床证据。在耐受性、局部和全身抗肿瘤控制方面,RT、免疫疗法和纳米颗粒的三联组合很有前景。然而,要揭示这种联合治疗的多尺度机制及其相关参数的复杂性,仍面临重大挑战。这些参数包括患者特征、肿瘤体积和组织学、放射技术、能量、剂量、分割、免疫治疗靶点和预测生物标志物、纳米颗粒类型、大小、递送(瘤内/静脉内)、分布。时间组合是另一个关键参数。本文综述了组合方法的反应机制,重点介绍了基于临床前、转化和临床研究的潜在机制。还讨论了将当前的认识转化为精确 RT 试验并与免疫疗法和纳米颗粒相结合的转化机会。