Acc Chem Res. 2020 Sep 15;53(9):1739-1748. doi: 10.1021/acs.accounts.0c00313. Epub 2020 Aug 18.
Cancer immunotherapy, particularly checkpoint blockade immunotherapy (CBI), has revolutionized the treatment of some cancers by reactivating the antitumor immunity of hosts with durable response and manageable toxicity. However, many cancer patients with low tumor antigen exposure and immunosuppressive tumor microenvironments do not respond to CBI. A variety of methods have been investigated to reverse immunosuppressive tumor microenvironments and turn "cold" tumors "hot" with the goal of extending the therapeutic benefits of CBI to a broader population of cancer patients. Immunostimulatory adjuvant treatments, such as cancer vaccines, photodynamic therapy (PDT), radiotherapy (RT), radiotherapy-radiodynamic therapy (RT-RDT), and chemodynamic therapy (CDT), promote antigen presentation and T cell priming and, when used in combination with CBI, reactivate and sustain systemic antitumor immunity. Cancer vaccines directly provide tumor antigens, while immunoadjuvant therapies such as PDT, RT, RT-RDT, and CDT kill cancer cells in an immunogenic fashion to release tumor antigens . Direct administration of tumor antigens or indirect intratumoral immunoadjuvant therapies as cancer vaccines initiate the immuno-oncology cycle for antitumor immune response.With the rapid growth of cancer nanotechnology in the past two decades, a large number of nanoparticle platforms have been studied, and some nanomedicines have been translated into clinical trials. Nanomedicine provides a promising strategy to enhance the efficacy of immunoadjuvant therapies to potentiate cancer immunotherapy. Among these nanoparticle platforms, nanoscale metal-organic frameworks (nMOFs) have emerged as a unique class of porous hybrid nanomaterials with metal cluster secondary building units and organic linkers. With molecular modularity, structural tunability, intrinsic porosity, tunable stability, and biocompatibility, nMOFs are ideally suited for biomedical applications, particularly cancer treatments.In this Account, we present recent breakthroughs in the design of nMOFs as nanocarriers for cancer vaccine delivery and as nanosensitizers for PDT, CDT, RT, and RT-RDT. The versatility of nMOFs allows them to be fine-tuned to effectively load tumor antigens and immunoadjuvants as cancer vaccines and significantly enhance the local antitumor efficacy of PDT, RT, RT-RDT, and CDT generation of reactive oxygen species (ROS) for cancer vaccination. These nMOF-based treatments are further combined with cancer immunotherapies to elicit systemic antitumor immunity. We discuss novel strategies to enhance light tissue penetration and overcome tumor hypoxia in PDT, to increase energy deposition and ROS diffusion in RT, to combine the advantages of PDT and RT to enable RT-RDT, and to trigger CDT by hijacking aberrant metabolic processes in tumors. Loading nMOFs with small-molecule drugs such as an indoleamine 2,3-dioxygenase inhibitor, the toll-like receptor agonist imiquimod, and biomacromolecules such as CpG oligodeoxynucleotides and anti-CD47 antibody synergizes with nMOF-based radical therapies to enhance their immunotherapeutic effects. Further combination with immune checkpoint inhibitors activates systemic antitumor immune responses and elicits abscopal effects. With structural and compositional tunability, nMOFs are poised to provide a new clinically deployable nanotechnology platform to promote immunostimulatory tumor microenvironments by delivering cancer vaccines, mediating PDT, enhancing RT, enabling RT-RDT, and catalyzing CDT and potentiate cancer immunotherapy.
癌症免疫疗法,特别是检查点阻断免疫疗法(CBI),通过激活宿主的抗肿瘤免疫反应,实现了持久的反应和可管理的毒性,从而彻底改变了某些癌症的治疗方法。然而,许多肿瘤抗原暴露低和免疫抑制肿瘤微环境的癌症患者对 CBI 没有反应。为了将 CBI 的治疗益处扩展到更广泛的癌症患者群体,已经研究了多种方法来逆转免疫抑制性肿瘤微环境,使“冷”肿瘤“热”起来。免疫刺激佐剂治疗,如癌症疫苗、光动力疗法(PDT)、放射疗法(RT)、放疗-放射动力学疗法(RT-RDT)和化学动力学疗法(CDT),促进抗原呈递和 T 细胞启动,并且当与 CBI 联合使用时,重新激活和维持全身抗肿瘤免疫。癌症疫苗直接提供肿瘤抗原,而免疫佐剂治疗,如 PDT、RT、RT-RDT 和 CDT 以免疫原性方式杀死癌细胞,释放肿瘤抗原。直接给予肿瘤抗原或间接的瘤内免疫佐剂治疗作为癌症疫苗,为抗肿瘤免疫反应启动免疫肿瘤学循环。在过去二十年癌症纳米技术的快速发展中,已经研究了大量的纳米颗粒平台,并且一些纳米药物已经转化为临床试验。纳米医学提供了一种有前途的策略,可以增强免疫佐剂疗法的疗效,增强癌症免疫疗法。在这些纳米颗粒平台中,纳米级金属-有机骨架(nMOFs)作为一类独特的多孔杂化纳米材料脱颖而出,具有金属簇二级结构单元和有机连接物。nMOFs 具有分子模块性、结构可调变性、固有多孔性、可调稳定性和生物相容性,非常适合于生物医学应用,特别是癌症治疗。在本账目中,我们介绍了在设计 nMOFs 作为癌症疫苗递送的纳米载体和作为 PDT、CDT、RT 和 RT-RDT 的纳米敏化剂方面的最新突破。nMOFs 的多功能性允许它们进行微调,以有效负载肿瘤抗原和免疫佐剂作为癌症疫苗,并显著增强 PDT、RT、RT-RDT 和 CDT 的局部抗肿瘤疗效,生成用于癌症疫苗接种的活性氧(ROS)。这些基于 nMOF 的治疗方法进一步与癌症免疫疗法相结合,以引发全身抗肿瘤免疫。我们讨论了增强 PDT 中组织穿透深度和克服肿瘤缺氧的新策略,增加 RT 中能量沉积和 ROS 扩散的策略,结合 PDT 和 RT 的优势以实现 RT-RDT 的策略,以及通过劫持肿瘤中异常代谢过程触发 CDT 的策略。将小分子药物(如吲哚胺 2,3-双加氧酶抑制剂、 toll 样受体激动剂咪喹莫特)和生物大分子(如 CpG 寡脱氧核苷酸和抗 CD47 抗体)装入 nMOFs 中,与 nMOF 基自由基疗法协同作用,增强其免疫治疗效果。与免疫检查点抑制剂的进一步结合激活了全身抗肿瘤免疫反应,并引发了远隔效应。nMOFs 具有结构和组成可调变性,有望提供一种新的临床可部署的纳米技术平台,通过递送癌症疫苗、介导 PDT、增强 RT、实现 RT-RDT 和催化 CDT 以及增强癌症免疫疗法来促进免疫刺激性肿瘤微环境。
Acc Chem Res. 2020-9-15
ACS Cent Sci. 2020-6-24
Acta Pharmacol Sin. 2020-7
J Control Release. 2022-7
J Nanobiotechnology. 2025-8-21
Mater Today Bio. 2025-7-3
Cancers (Basel). 2025-2-27
Nat Rev Bioeng. 2024-9
ACS Cent Sci. 2020-6-24
Angew Chem Int Ed Engl. 2020-2-10