Suppr超能文献

大肠杆菌B温度敏感型dnaK突变体的分离与鉴定。

Isolation and characterization of a temperature-sensitive dnaK mutant of Escherichia coli B.

作者信息

Itikawa H, Ryu J

出版信息

J Bacteriol. 1979 May;138(2):339-44. doi: 10.1128/jb.138.2.339-344.1979.

Abstract

A temperature-sensitive dnaK mutant (strain MT112) was isolated from Escherichia coli B strain H/r30RT by thymineless death selection at 43 degrees C. By genetic mapping, the mutation [dnaK7(Ts)] was located near the thr gene (approximately 0.2 min on the may). E. coli K-12 transductants of the mutation to temperature sensitivity were assayed for their susceptibility to transducing phage lambda carrying the dnaK and/or the dnaJ gene. All of the transductants were able to propagate phage lambda carrying the dnaK gene. When macromolecular synthesis of the mutant was assayed at 43 degrees C, it was observed that both deoxyribonucleic acid and ribonucleic acid syntheses were severely inhibited. Thus, it was suggested that the conditionally defective dnaK mutation affects both cellular deoxyribonucleic acid and ribonucleic acid syntheses at the nonpermissive temperature in addition to inability to propagate phage lambda at permissive temperature.

摘要

通过在43℃下进行无胸腺死亡选择,从大肠杆菌B株H/r30RT中分离出一种温度敏感型dnaK突变体(菌株MT112)。通过遗传作图,该突变[dnaK7(Ts)]位于thr基因附近(在染色体上约0.2分钟处)。对该突变的大肠杆菌K-12转导子进行温度敏感性检测,以检测它们对携带dnaK和/或dnaJ基因的转导噬菌体λ的敏感性。所有转导子都能够繁殖携带dnaK基因的噬菌体λ。当在43℃下检测突变体的大分子合成时,观察到脱氧核糖核酸和核糖核酸的合成均受到严重抑制。因此,有人提出,这种条件性缺陷的dnaK突变除了在允许温度下无法繁殖噬菌体λ外,在非允许温度下还会影响细胞的脱氧核糖核酸和核糖核酸合成。

相似文献

1
Isolation and characterization of a temperature-sensitive dnaK mutant of Escherichia coli B.
J Bacteriol. 1979 May;138(2):339-44. doi: 10.1128/jb.138.2.339-344.1979.
2
Organization and expression of the dnaJ and dnaK genes of Escherichia coli K12.
Mol Gen Genet. 1978 Aug 4;164(1):1-8. doi: 10.1007/BF00267592.
3
Participation of Escherichia coli K-12 groE gene products in the synthesis of cellular DNA and RNA.
J Bacteriol. 1984 Feb;157(2):694-6. doi: 10.1128/jb.157.2.694-696.1984.
7
Temperature-sensitive modification and restriction phenotypes of an Escherichia coli dnaD mutant.
J Bacteriol. 1974 Sep;119(3):907-12. doi: 10.1128/jb.119.3.907-912.1974.
8
Ribonucleic acid polymerase mutant of Escherichia coli defective in flagella formation.
J Bacteriol. 1977 Oct;132(1):254-61. doi: 10.1128/jb.132.1.254-261.1977.
9
Isolation and characterization of dnaJ null mutants of Escherichia coli.
J Bacteriol. 1990 Sep;172(9):4827-35. doi: 10.1128/jb.172.9.4827-4835.1990.
10
Isolation of a specialized transducing bacteriophage lambda carrying the polC locus of Escherichia coli.
Proc Natl Acad Sci U S A. 1974 Jul;71(7):2614-7. doi: 10.1073/pnas.71.7.2614.

引用本文的文献

1
The Nuclear and DNA-Associated Molecular Chaperone Network.
Cold Spring Harb Perspect Biol. 2019 Oct 1;11(10):a034009. doi: 10.1101/cshperspect.a034009.
4
Novel strategy for biofilm inhibition by using small molecules targeting molecular chaperone DnaK.
Antimicrob Agents Chemother. 2015 Jan;59(1):633-41. doi: 10.1128/AAC.04465-14. Epub 2014 Nov 17.
5
An essential nonredundant role for mycobacterial DnaK in native protein folding.
PLoS Genet. 2014 Jul 24;10(7):e1004516. doi: 10.1371/journal.pgen.1004516. eCollection 2014 Jul.
6
Characterization of osmotically induced filaments of Salmonella enterica.
Appl Environ Microbiol. 2012 Sep;78(18):6704-13. doi: 10.1128/AEM.01784-12. Epub 2012 Jul 13.
7
Stabilization of the Escherichia coli DNA polymerase III ε subunit by the θ subunit favors in vivo assembly of the Pol III catalytic core.
Arch Biochem Biophys. 2012 Jul 15;523(2):135-43. doi: 10.1016/j.abb.2012.04.013. Epub 2012 Apr 22.
8
Production of recombinant proteins in the lon-deficient BL21(DE3) strain of Escherichia coli in the absence of the DnaK chaperone.
Appl Environ Microbiol. 2009 Jun;75(11):3803-7. doi: 10.1128/AEM.00255-09. Epub 2009 Apr 3.
9
Physiologic effects of forced down-regulation of dnaK and groEL expression in Streptococcus mutans.
J Bacteriol. 2007 Mar;189(5):1582-8. doi: 10.1128/JB.01655-06. Epub 2006 Dec 15.

本文引用的文献

1
Transduction of linked genetic characters of the host by bacteriophage P1.
Virology. 1955 Jul;1(2):190-206. doi: 10.1016/0042-6822(55)90016-7.
3
Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division.
Cold Spring Harb Symp Quant Biol. 1968;33:677-93. doi: 10.1101/sqb.1968.033.01.077.
4
DNA synthesis in temperature sensitive mutants of Escherichia coli.
Cold Spring Harb Symp Quant Biol. 1968;33:317-24. doi: 10.1101/sqb.1968.033.01.036.
5
Characterization of two bacterial mutants with temperature-sensitive synthesis of DNA.
Genetics. 1968 Sep;60(1):1-17. doi: 10.1093/genetics/60.1.1.
6
Bacterial cell division regulation: characterization of the dnaH locus of Escherichia coli.
J Bacteriol. 1974 Aug;119(2):443-9. doi: 10.1128/jb.119.2.443-449.1974.
7
A dnaB analog specified by bacteriophage P1.
J Mol Biol. 1975 May 25;94(3):341-66. doi: 10.1016/0022-2836(75)90207-7.
8
Recalibrated linkage map of Escherichia coli K-12.
Bacteriol Rev. 1976 Mar;40(1):116-67. doi: 10.1128/br.40.1.116-167.1976.
10
Organization and expression of the dnaJ and dnaK genes of Escherichia coli K12.
Mol Gen Genet. 1978 Aug 4;164(1):1-8. doi: 10.1007/BF00267592.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验