Suppr超能文献

用于高稳定性薄膜晶体管和发光晶体管的铟锌钛氧化物沟道层

InZnTiON Channel Layer for Highly Stable Thin-Film Transistors and Light-Emitting Transistors.

作者信息

Lee Ju-Hyeon, Park Jung-Min, Park Yu Jung, Seo Jung Hwa, Kim Han-Ki

机构信息

School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.

Department of Physics, University of Seoul, 134-2, Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2023 Jul 26;15(29):35149-35160. doi: 10.1021/acsami.3c04178. Epub 2023 Jul 13.

Abstract

In this study, we incorporated TiN as a carrier suppressor into an amorphous InZnO channel to achieve stable channels for thin-film transistors (TFTs) and light-emitting transistors (LETs). The low electronegativity and standard electrode potential of the Ti dopant led to a reduction in the number of oxygen vacancies in the InZnO channel. Moreover, the substitution of nitrogen into the oxygen sites of InZnO effectively decreased the excess electrons. As a result, the cosputtering of the TiN dopant resulted in a decrease in the carrier concentration of the InZnO channel, serving as an effective carrier suppressor. Due to the distinct structures of TiN and InZnO, the TiN-doped InZnO channel exhibited a completely amorphous structure and a featureless surface morphology. The presence of oxygen vacancies in the InZnO channel creates trap states for electrons and holes. Consequently, the TFT with the InZnTiON channel demonstrated an improved subthreshold swing and enhanced stability during the gate bias stress test. Furthermore, the threshold voltage shift (Δ) changed from 3.29 to 0.86 V in the positive bias stress test and from -0.92 to -0.09 V in the negative bias stress test. Additionally, we employed an InZnTiON channel in LETs as a substitute for organic semiconductors. The reduction in the number of oxygen vacancies effectively prevented exciton quenching caused by hole traps within the vacancies. Consequently, appropriate TiN doping in the InZnO channel enhanced the intensity of the LET devices.

摘要

在本研究中,我们将氮化钛(TiN)作为载流子抑制器掺入非晶铟锌氧化物(InZnO)沟道中,以实现用于薄膜晶体管(TFT)和发光晶体管(LET)的稳定沟道。Ti掺杂剂的低电负性和标准电极电位导致InZnO沟道中氧空位数量减少。此外,用氮取代InZnO中的氧位点有效地减少了过量电子。结果,TiN掺杂剂的共溅射导致InZnO沟道的载流子浓度降低,起到了有效的载流子抑制作用。由于TiN和InZnO的结构不同,TiN掺杂的InZnO沟道呈现出完全非晶的结构和无特征的表面形态。InZnO沟道中氧空位的存在为电子和空穴创造了陷阱态。因此,具有InZnTiON沟道的TFT在栅极偏置应力测试中表现出改善的亚阈值摆幅和增强的稳定性。此外,在正偏置应力测试中,阈值电压偏移(Δ)从3.29 V变为0.86 V,在负偏置应力测试中从 -0.92 V变为 -0.09 V。此外,我们在LET中采用InZnTiON沟道替代有机半导体。氧空位数量的减少有效地防止了空位内的空穴陷阱引起的激子猝灭。因此,在InZnO沟道中适当掺杂TiN提高了LET器件的发光强度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验