Suppr超能文献

基于临床相关药物暴露的患者来源肿瘤细胞的泛癌药物基因组学分析。

Pan-Cancer Pharmacogenomic Analysis of Patient-Derived Tumor Cells Using Clinically Relevant Drug Exposures.

机构信息

University of California at San Francisco, School of Pharmacy, Department of Clinical Pharmacy, San Francisco, California.

California Pacific Medical Center Research Institute, San Francisco, California.

出版信息

Mol Cancer Ther. 2023 Sep 5;22(9):1100-1111. doi: 10.1158/1535-7163.MCT-22-0486.

Abstract

As a result of tumor heterogeneity and solid cancers harboring multiple molecular defects, precision medicine platforms in oncology are most effective when both genetic and pharmacologic determinants of a tumor are evaluated. Expandable patient-derived xenograft (PDX) mouse tumor and corresponding PDX culture (PDXC) models recapitulate many of the biological and genetic characteristics of the original patient tumor, allowing for a comprehensive pharmacogenomic analysis. Here, the somatic mutations of 23 matched patient tumor and PDX samples encompassing four cancers were first evaluated using next-generation sequencing (NGS). 19 antitumor agents were evaluated across 78 patient-derived tumor cultures using clinically relevant drug exposures. A binarization threshold sensitivity classification determined in culture (PDXC) was used to identify tumors that best respond to drug in vivo (PDX). Using this sensitivity classification, logic models of DNA mutations were developed for 19 antitumor agents to predict drug response. We determined that the concordance of somatic mutations across patient and corresponding PDX samples increased as variant allele frequency increased. Notable individual PDXC responses to specific drugs, as well as lineage-specific drug responses were identified. Robust responses identified in PDXC were recapitulated in vivo in PDX-bearing mice and logic modeling determined somatic gene mutation(s) defining response to specific antitumor agents. In conclusion, combining NGS of primary patient tumors, high-throughput drug screen using clinically relevant doses, and logic modeling, can provide a platform for understanding response to therapeutic drugs targeting cancer.

摘要

由于肿瘤异质性和实体瘤存在多种分子缺陷,因此当评估肿瘤的遗传和药理决定因素时,肿瘤学中的精准医学平台最为有效。可扩展的患者来源异种移植(PDX)小鼠肿瘤和相应的 PDX 培养物(PDXC)模型再现了原始患者肿瘤的许多生物学和遗传特征,从而可以进行全面的药物基因组学分析。在这里,首先使用下一代测序(NGS)评估了涵盖四种癌症的 23 对匹配的患者肿瘤和 PDX 样本的体细胞突变。使用临床相关药物暴露评估了 78 种患者来源的肿瘤培养物中的 19 种抗肿瘤药物。在培养物(PDXC)中确定的二进制化敏感性分类阈值用于鉴定对体内药物反应最佳的肿瘤(PDX)。使用这种敏感性分类,为 19 种抗肿瘤药物开发了 DNA 突变的逻辑模型,以预测药物反应。我们确定,随着变异等位基因频率的增加,患者和相应 PDX 样本之间的体细胞突变一致性增加。确定了个别 PDXC 对特定药物的显著反应,以及谱系特异性药物反应。在携带 PDX 的小鼠体内重现了 PDXC 中的强大反应,并且逻辑模型确定了定义对特定抗肿瘤药物反应的体细胞基因突变。总之,将原发性患者肿瘤的 NGS、使用临床相关剂量的高通量药物筛选以及逻辑建模相结合,可以为了解针对癌症的治疗性药物的反应提供平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验