Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Cancer Res. 2019 Sep 1;79(17):4539-4550. doi: 10.1158/0008-5472.CAN-19-0349. Epub 2019 May 29.
Identifying robust biomarkers of drug response constitutes a key challenge in precision medicine. Patient-derived tumor xenografts (PDX) have emerged as reliable preclinical models that more accurately recapitulate tumor response to chemo- and targeted therapies. However, the lack of computational tools makes it difficult to analyze high-throughput molecular and pharmacologic profiles of PDX. We have developed Xenograft Visualization & Analysis (Xeva), an open-source software package for pharmacogenomic datasets that allows for quantification of variability in gene expression and pathway activity across PDX passages. We found that only a few genes and pathways exhibited passage-specific alterations and were therefore not suitable for biomarker discovery. Using the largest PDX pharmacogenomic dataset to date, we identified 87 pathways that are significantly associated with response to 51 drugs (FDR < 0.05). We found novel biomarkers based on gene expressions, copy number aberrations, and mutations predictive of drug response (concordance index > 0.60; FDR < 0.05). Our study demonstrates that Xeva provides a flexible platform for integrative analysis of preclinical pharmacogenomics data to identify biomarkers predictive of drug response, representing a major step forward in precision oncology. SIGNIFICANCE: A computational platform for PDX data analysis reveals consistent gene and pathway activity across passages and confirms drug response prediction biomarkers in PDX..
鉴定药物反应的稳健生物标志物是精准医学的关键挑战。患者来源的肿瘤异种移植(PDX)已成为可靠的临床前模型,更准确地再现肿瘤对化疗和靶向治疗的反应。然而,缺乏计算工具使得难以分析 PDX 的高通量分子和药理特征。我们开发了 Xenograft Visualization & Analysis(Xeva),这是一个用于药物基因组数据集的开源软件包,允许定量 PDX 传代过程中基因表达和途径活性的变异性。我们发现只有少数基因和途径表现出特定的传代变化,因此不适合用于生物标志物发现。使用迄今为止最大的 PDX 药物基因组数据集,我们确定了 87 条与 51 种药物反应显著相关的途径(FDR < 0.05)。我们发现了基于基因表达、拷贝数异常和突变的新型药物反应预测生物标志物(一致性指数> 0.60;FDR < 0.05)。我们的研究表明,Xeva 为整合分析临床前药物基因组学数据提供了一个灵活的平台,以鉴定预测药物反应的生物标志物,这是精准肿瘤学的重要一步。意义:用于 PDX 数据分析的计算平台揭示了跨传代过程中一致的基因和途径活性,并在 PDX 中证实了药物反应预测生物标志物。