Suppr超能文献

转座元件在人类早期胚胎发育和胚胎模型中的作用。

Transposable elements in early human embryo development and embryo models.

机构信息

Department of Molecular, Cell and Developmental Biology, University of California, 90095 Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, 90095 Los Angeles, CA, USA.; Molecular Biology Institute, University of California, 90095 Los Angeles, CA, USA; Center for Reproductive Science, Health and Education, University of California, 90095 Los Angeles, CA, USA.

Department of Molecular, Cell and Developmental Biology, University of California, 90095 Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, 90095 Los Angeles, CA, USA.; Molecular Biology Institute, University of California, 90095 Los Angeles, CA, USA; Center for Reproductive Science, Health and Education, University of California, 90095 Los Angeles, CA, USA.

出版信息

Curr Opin Genet Dev. 2023 Aug;81:102086. doi: 10.1016/j.gde.2023.102086. Epub 2023 Jul 11.

Abstract

Transposable elements (TEs), long discounted as 'selfish genomic elements,' are increasingly appreciated as the drivers of genomic evolution, genome organization, and gene regulation. TEs are particularly important in early embryo development, where advances in stem cell technologies, in tandem with improved computational and next-generation sequencing approaches, have provided an unprecedented opportunity to study the contribution of TEs to early mammalian development. Here, we summarize advances in our understanding of TEs in early human development and expand on how new stem cell-based embryo models can be leveraged to augment this understanding.

摘要

转座元件(TEs),长期以来被视为“自私的基因组元件”,现在越来越被认为是基因组进化、基因组组织和基因调控的驱动因素。TEs 在早期胚胎发育中尤为重要,干细胞技术的进步,加上改进的计算和下一代测序方法,为研究 TEs 对早期哺乳动物发育的贡献提供了前所未有的机会。在这里,我们总结了我们对人类早期发育中 TEs 的理解的进展,并扩展了如何利用新的基于干细胞的胚胎模型来增强这种理解。

相似文献

1
Transposable elements in early human embryo development and embryo models.
Curr Opin Genet Dev. 2023 Aug;81:102086. doi: 10.1016/j.gde.2023.102086. Epub 2023 Jul 11.
2
Jump-starting life: balancing transposable element co-option and genome integrity in the developing mammalian embryo.
EMBO Rep. 2024 Apr;25(4):1721-1733. doi: 10.1038/s44319-024-00118-5. Epub 2024 Mar 25.
3
Impact of transposable elements on the evolution of mammalian gene regulation.
Cytogenet Genome Res. 2005;110(1-4):342-52. doi: 10.1159/000084966.
4
TFs for TEs: the transcription factor repertoire of mammalian transposable elements.
Genes Dev. 2021 Jan 1;35(1-2):22-39. doi: 10.1101/gad.344473.120.
5
Transposable elements in mammalian chromatin organization.
Nat Rev Genet. 2023 Oct;24(10):712-723. doi: 10.1038/s41576-023-00609-6. Epub 2023 Jun 7.
6
Transposable elements and psychiatric disorders.
Am J Med Genet B Neuropsychiatr Genet. 2014 Apr;165B(3):201-16. doi: 10.1002/ajmg.b.32225. Epub 2014 Feb 28.
8
The important contribution of transposable elements to phenotypic variation and evolution.
Curr Opin Plant Biol. 2022 Feb;65:102140. doi: 10.1016/j.pbi.2021.102140. Epub 2021 Dec 6.
9
Mammalian transposable elements and their impacts on genome evolution.
Chromosome Res. 2018 Mar;26(1-2):25-43. doi: 10.1007/s10577-017-9570-z. Epub 2018 Feb 1.

引用本文的文献

1
Recent Non-LTR Retrotransposon Activity Predicts Cancer Prevalence in Mammals.
bioRxiv. 2025 Sep 4:2025.08.30.673284. doi: 10.1101/2025.08.30.673284.
2
Safeguarding spermatogenesis from retrotransposon insertions by forming ecDNA.
bioRxiv. 2025 May 15:2025.05.11.653319. doi: 10.1101/2025.05.11.653319.
4
Epigenome dynamics in early mammalian embryogenesis.
Nat Rev Genet. 2025 Apr 3. doi: 10.1038/s41576-025-00831-4.
6
Transposable element activity captures human pluripotent cell states.
EMBO Rep. 2025 Jan;26(2):329-352. doi: 10.1038/s44319-024-00343-y. Epub 2024 Dec 12.
7
From the genome's perspective: Bearing somatic retrotransposition to leverage the regulatory potential of L1 RNAs.
Bioessays. 2025 Feb;47(2):e2400125. doi: 10.1002/bies.202400125. Epub 2024 Nov 9.
8
Transcription of Endogenous Retroviruses: Broad and Precise Mechanisms of Control.
Viruses. 2024 Aug 17;16(8):1312. doi: 10.3390/v16081312.
9
Expression of Transposable Elements throughout the Trematode Life Cycle.
Noncoding RNA. 2024 Jul 3;10(4):39. doi: 10.3390/ncrna10040039.
10
Massively parallel jumping assay decodes retrotransposition activity.
bioRxiv. 2024 Apr 19:2024.04.16.589814. doi: 10.1101/2024.04.16.589814.

本文引用的文献

1
Widespread contribution of transposable elements to the rewiring of mammalian 3D genomes.
Nat Commun. 2023 Feb 6;14(1):634. doi: 10.1038/s41467-023-36364-9.
2
Primate-specific transposable elements shape transcriptional networks during human development.
Nat Commun. 2022 Nov 23;13(1):7178. doi: 10.1038/s41467-022-34800-w.
3
Single-cell analysis of embryoids reveals lineage diversification roadmaps of early human development.
Cell Stem Cell. 2022 Sep 1;29(9):1402-1419.e8. doi: 10.1016/j.stem.2022.08.009.
5
Stage-specific H3K9me3 occupancy ensures retrotransposon silencing in human pre-implantation embryos.
Cell Stem Cell. 2022 Jul 7;29(7):1051-1066.e8. doi: 10.1016/j.stem.2022.06.001.
6
Dynamic reprogramming of H3K9me3 at hominoid-specific retrotransposons during human preimplantation development.
Cell Stem Cell. 2022 Jul 7;29(7):1031-1050.e12. doi: 10.1016/j.stem.2022.06.006.
7
Recapitulating early human development with 8C-like cells.
Cell Rep. 2022 Jun 21;39(12):110994. doi: 10.1016/j.celrep.2022.110994.
9
Single nucleus multi-omics identifies human cortical cell regulatory genome diversity.
Cell Genom. 2022 Mar 9;2(3). doi: 10.1016/j.xgen.2022.100107.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验