Department of Molecular, Cell and Developmental Biology, University of California, 90095 Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, 90095 Los Angeles, CA, USA.; Molecular Biology Institute, University of California, 90095 Los Angeles, CA, USA; Center for Reproductive Science, Health and Education, University of California, 90095 Los Angeles, CA, USA.
Department of Molecular, Cell and Developmental Biology, University of California, 90095 Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, 90095 Los Angeles, CA, USA.; Molecular Biology Institute, University of California, 90095 Los Angeles, CA, USA; Center for Reproductive Science, Health and Education, University of California, 90095 Los Angeles, CA, USA.
Curr Opin Genet Dev. 2023 Aug;81:102086. doi: 10.1016/j.gde.2023.102086. Epub 2023 Jul 11.
Transposable elements (TEs), long discounted as 'selfish genomic elements,' are increasingly appreciated as the drivers of genomic evolution, genome organization, and gene regulation. TEs are particularly important in early embryo development, where advances in stem cell technologies, in tandem with improved computational and next-generation sequencing approaches, have provided an unprecedented opportunity to study the contribution of TEs to early mammalian development. Here, we summarize advances in our understanding of TEs in early human development and expand on how new stem cell-based embryo models can be leveraged to augment this understanding.
转座元件(TEs),长期以来被视为“自私的基因组元件”,现在越来越被认为是基因组进化、基因组组织和基因调控的驱动因素。TEs 在早期胚胎发育中尤为重要,干细胞技术的进步,加上改进的计算和下一代测序方法,为研究 TEs 对早期哺乳动物发育的贡献提供了前所未有的机会。在这里,我们总结了我们对人类早期发育中 TEs 的理解的进展,并扩展了如何利用新的基于干细胞的胚胎模型来增强这种理解。