Tracy Lauren, Zhang Zz Zhao
Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA.
bioRxiv. 2025 May 15:2025.05.11.653319. doi: 10.1101/2025.05.11.653319.
Retrotransposon mobilization in germline cells enables the rewriting of genetic information to drive genome innovation, species evolution, and adaptation through the generation of de novo mutations. However, uncontrolled mobilization can cause DNA breaks and genome instability, often leading to sterility. How germ cells balance retrotransposon-induced genome innovation with the need for genomic integrity remains poorly understood. Here, we used spermatogenesis as a model to investigate retrotransposon mobilization dynamics. Although many retrotransposon families are transcriptionally active, we found that the LTR-retrotransposon completes the full mobilization cascade-including mRNA export, protein translation, and reverse transcription-to produce double-stranded DNA (dsDNA) the most efficiently. Strikingly, despite successfully generating dsDNA, rarely achieves genomic reintegration. Instead, its newly synthesized DNA predominantly forms extrachromosomal circular DNA (ecDNA). These findings suggest that ecDNA formation acts as a protective mechanism to sequester retrotransposon-derived DNA and prevent widespread genomic integration during spermatogenesis, thereby preserving genome stability while allowing limited retrotransposon activity.
生殖细胞中的逆转录转座子动员能够通过产生新生突变来重写遗传信息,从而推动基因组创新、物种进化和适应。然而,不受控制的动员可能导致DNA断裂和基因组不稳定,常常导致不育。生殖细胞如何在逆转录转座子诱导的基因组创新与基因组完整性需求之间取得平衡,目前仍知之甚少。在这里,我们以精子发生为模型来研究逆转录转座子的动员动态。尽管许多逆转录转座子家族具有转录活性,但我们发现长末端重复序列逆转录转座子最有效地完成了包括mRNA输出、蛋白质翻译和逆转录在内的完整动员级联反应,以产生双链DNA(dsDNA)。令人惊讶的是,尽管成功产生了dsDNA,但很少能实现基因组重新整合。相反,其新合成的DNA主要形成染色体外环状DNA(ecDNA)。这些发现表明,ecDNA的形成作为一种保护机制,隔离逆转录转座子衍生的DNA,并在精子发生过程中防止广泛的基因组整合,从而在允许有限的逆转录转座子活性的同时保持基因组稳定性。