School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
Comput Biol Med. 2023 Sep;163:107235. doi: 10.1016/j.compbiomed.2023.107235. Epub 2023 Jul 4.
It is impractical to collect sufficient and well-labeled EEG data in Brain-computer interface because of the time-consuming data acquisition and costly annotation. Conventional classification methods reusing EEG data from different subjects and time periods (across domains) significantly decrease the classification accuracy of motor imagery. In this paper, we propose a deep domain adaptation framework with correlation alignment (DDAF-CORAL) to solve the problem of distribution divergence for motor imagery classification across domains. Specifically, a two-stage framework is adopted to extract deep features for raw EEG data. The distribution divergence caused by subjected-related and time-related variations is further minimized by aligning the covariance of the source and target EEG feature distributions. Finally, the classification loss and adaptation loss are optimized simultaneously to achieve sufficient discriminative classification performance and low feature distribution divergence. Extensive experiments on three EEG datasets demonstrate that our proposed method can effectively reduce the distribution divergence between the source and target EEG data. The results show that our proposed method delivers outperformance (an average classification accuracy of 92.9% for within-session, an average kappa value of 0.761 for cross-session, and an average classification accuracy of 83.3% for cross-subject) in two-class classification tasks compared to other state-of-the-art methods.
由于 EEG 数据采集耗时且标注成本高,因此在脑机接口中收集足够且标记良好的 EEG 数据是不切实际的。传统的分类方法重用来自不同受试者和时间段(跨域)的 EEG 数据,这会显著降低运动想象的分类准确性。在本文中,我们提出了一种具有相关对齐(DDAF-CORAL)的深度域自适应框架,以解决跨域运动想象分类的分布发散问题。具体来说,采用两阶段框架从原始 EEG 数据中提取深度特征。通过对齐源和目标 EEG 特征分布的协方差,进一步最小化由于受试者相关和时间相关变化引起的分布发散。最后,同时优化分类损失和适应损失,以实现足够的判别分类性能和低特征分布发散。在三个 EEG 数据集上的广泛实验表明,我们提出的方法可以有效地减少源和目标 EEG 数据之间的分布发散。结果表明,与其他最先进的方法相比,我们提出的方法在两类分类任务中表现出色(会话内的平均分类准确率为 92.9%,跨会话的平均 Kappa 值为 0.761,跨受试者的平均分类准确率为 83.3%)。