Li Jianxiu, Shi Jiaxin, Yu Pengda, Yan Xiaokai, Lin Yuting
Inner Mongolia University, Huhhot, 010021, China.
Lanzhou University, Lanzhou, 730000, China.
Sci Rep. 2025 Mar 27;15(1):10664. doi: 10.1038/s41598-025-95178-5.
Electroencephalography (EEG)-based motor imagery (MI) is extensively utilized in clinical rehabilitation and virtual reality-based movement control. Decoding EEG-based MI signals is challenging because of the inherent spatio-temporal variability of the original signal representation, coupled with a low signal-to-noise ratio (SNR), which impedes the extraction of clean and robust features. To address this issue, we propose a multi-scale spatio-temporal domain-invariant representation learning method, termed MSDI. By decomposing the original signal into spatial and temporal components, the proposed method extracts invariant features at multiple scales from both components. To further constrain the representation to invariant domains, we introduce a feature-aware shift operation that resamples the representation based on its feature statistics and feature measure, thereby projecting the features into a domain-invariant space. We evaluate our proposed method via two publicly available datasets, BNCI2014-001 and BNCI2014-004, demonstrating state-of-the-art performance on both datasets. Furthermore, our method exhibits superior time efficiency and noise resistance.
基于脑电图(EEG)的运动想象(MI)在临床康复和基于虚拟现实的运动控制中得到了广泛应用。由于原始信号表示固有的时空变异性,再加上低信噪比(SNR),解码基于EEG的MI信号具有挑战性,这阻碍了清晰且稳健特征的提取。为了解决这个问题,我们提出了一种多尺度时空域不变表示学习方法,称为MSDI。通过将原始信号分解为空间和时间分量,该方法从两个分量中提取多个尺度的不变特征。为了进一步将表示约束到不变域,我们引入了一种特征感知移位操作,该操作根据其特征统计和特征度量对表示进行重采样,从而将特征投影到一个域不变空间中。我们通过两个公开可用的数据集BNCI2014 - 001和BNCI2014 - 004评估了我们提出的方法,在这两个数据集上都展示了领先的性能。此外,我们的方法具有卓越的时间效率和抗噪性。