Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA.
Nat Genet. 2023 Aug;55(8):1267-1276. doi: 10.1038/s41588-023-01443-6. Epub 2023 Jul 13.
Genome-wide association studies (GWASs) are a valuable tool for understanding the biology of complex human traits and diseases, but associated variants rarely point directly to causal genes. In the present study, we introduce a new method, polygenic priority score (PoPS), that learns trait-relevant gene features, such as cell-type-specific expression, to prioritize genes at GWAS loci. Using a large evaluation set of genes with fine-mapped coding variants, we show that PoPS and the closest gene individually outperform other gene prioritization methods, but observe the best overall performance by combining PoPS with orthogonal methods. Using this combined approach, we prioritize 10,642 unique gene-trait pairs across 113 complex traits and diseases with high precision, finding not only well-established gene-trait relationships but nominating new genes at unresolved loci, such as LGR4 for estimated glomerular filtration rate and CCR7 for deep vein thrombosis. Overall, we demonstrate that PoPS provides a powerful addition to the gene prioritization toolbox.
全基因组关联研究(GWAS)是理解复杂人类特征和疾病生物学的有价值的工具,但相关变体很少直接指向因果基因。在本研究中,我们引入了一种新方法,多基因优先评分(PoPS),该方法可以学习与特征相关的基因特征,如细胞类型特异性表达,以优先考虑 GWAS 基因座上的基因。使用具有精细映射编码变体的大型评估基因集,我们表明 PoPS 和最接近的基因各自优于其他基因优先级方法,但通过将 PoPS 与正交方法相结合,可以获得最佳的整体性能。使用这种组合方法,我们对 113 种复杂疾病和特征中的 10642 个独特的基因-特征对进行了优先级排序,具有很高的精度,不仅发现了既定的基因-特征关系,而且在未解决的基因座上提名了新的基因,例如 LGR4 与肾小球滤过率和 CCR7 与深静脉血栓形成。总体而言,我们证明 PoPS 为基因优先级工具箱提供了强大的补充。