Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38000, Grenoble, France.
Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
Nat Commun. 2023 Jul 13;14(1):4187. doi: 10.1038/s41467-023-39908-1.
Spermiogenesis is a radical process of differentiation whereby sperm cells acquire a compact and specialized morphology to cope with the constraints of sexual reproduction while preserving their main cargo, an intact copy of the paternal genome. In animals, this often involves the replacement of most histones by sperm-specific nuclear basic proteins (SNBPs). Yet, how the SNBP-structured genome achieves compaction and accommodates shaping remain largely unknown. Here, we exploit confocal, electron and super-resolution microscopy, coupled with polymer modeling to identify the higher-order architecture of sperm chromatin in the needle-shaped nucleus of the emerging model cricket Gryllus bimaculatus. Accompanying spermatid differentiation, the SNBP-based genome is strikingly reorganized as ~25nm-thick fibers orderly coiled along the elongated nucleus axis. This chromatin spool is further found to achieve large-scale helical twisting in the final stages of spermiogenesis, favoring its ultracompaction. We reveal that these dramatic transitions may be recapitulated by a surprisingly simple biophysical principle based on a nucleated rigidification of chromatin linked to the histone-to-SNBP transition within a confined nuclear space. Our work highlights a unique, liquid crystal-like mode of higher-order genome organization in ultracompact cricket sperm, and establishes a multidisciplinary methodological framework to explore the diversity of non-canonical modes of DNA organization.
精细胞发生是一个彻底的分化过程,在此过程中,精子细胞获得了紧凑和特化的形态,以应对有性生殖的限制,同时保持其主要货物,即父本基因组的完整拷贝。在动物中,这通常涉及用精子特异性核碱性蛋白(SNBP)替换大多数组蛋白。然而,SNBP 结构基因组如何实现紧凑化以及如何适应形态仍然知之甚少。在这里,我们利用共聚焦、电子和超分辨率显微镜,结合聚合物建模,来鉴定正在发育的模式蟋蟀 Gryllus bimaculatus 的针状核中精子染色质的高级结构。随着精细胞的分化,基于 SNBP 的基因组被显著地重新组织,形成沿着拉长的核轴有序缠绕的约 25nm 厚的纤维。在精细胞发生的最后阶段,进一步发现这种染色质线轴实现了大规模的螺旋扭曲,有利于其超紧凑化。我们揭示,这些戏剧性的转变可能是由一个惊人的简单生物物理原理来概括的,该原理基于在受限的核空间内与组蛋白到 SNBP 转变相关联的染色质的有核刚性化。我们的工作强调了在超紧凑的蟋蟀精子中存在一种独特的、类液晶的高级基因组组织模式,并建立了一个多学科的方法学框架,以探索非规范的 DNA 组织模式的多样性。