Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea.
Department of Artificial Intelligence and Informatics Research, Mayo Clinic, Jacksonville, FL, USA.
Sci Rep. 2023 Jul 13;13(1):11351. doi: 10.1038/s41598-023-38206-6.
The aim of this study was to address the issue of differentiating between Mayo endoscopic subscore (MES) 0 and MES 1 using a deep learning model. A dataset of 492 ulcerative colitis (UC) patients who demonstrated MES improvement between January 2018 and December 2019 at Samsung Medical Center was utilized. Specifically, two representative images of the colon and rectum were selected from each patient, resulting in a total of 984 images for analysis. The deep learning model utilized in this study consisted of a convolutional neural network (CNN)-based encoder, with two auxiliary classifiers for the colon and rectum, as well as a final MES classifier that combined image features from both inputs. In the internal test, the model achieved an F1-score of 0.92, surpassing the performance of seven novice classifiers by an average margin of 0.11, and outperforming their consensus by 0.02. The area under the receiver operating characteristic curve (AUROC) was calculated to be 0.97 when considering MES 1 as positive, with an area under the precision-recall curve (AUPRC) of 0.98. In the external test using the Hyperkvasir dataset, the model achieved an F1-score of 0.89, AUROC of 0.86, and AUPRC of 0.97. The results demonstrate that the proposed CNN-based model, which integrates image features from both the colon and rectum, exhibits superior performance in accurately discriminating between MES 0 and MES 1 in patients with UC.
本研究旨在利用深度学习模型解决区分 Mayo 内镜亚评分(MES)0 和 MES 1 的问题。该研究使用了 2018 年 1 月至 2019 年 12 月期间在三星医疗中心接受治疗的 492 例溃疡性结肠炎(UC)患者的数据集。具体来说,从每位患者中选择了结肠和直肠的两个代表性图像,共分析了 984 张图像。本研究中使用的深度学习模型由基于卷积神经网络(CNN)的编码器组成,带有结肠和直肠的两个辅助分类器,以及一个组合来自两个输入的图像特征的最终 MES 分类器。在内部测试中,该模型的 F1 得分为 0.92,平均比 7 名新手分类器的性能高出 0.11 分,比他们的共识高出 0.02 分。当将 MES 1 视为阳性时,计算得到的接收器操作特征曲线(AUROC)下面积为 0.97,而精度-召回曲线(AUPRC)下面积为 0.98。在使用 Hyperkvasir 数据集的外部测试中,该模型的 F1 得分为 0.89,AUROC 为 0.86,AUPRC 为 0.97。结果表明,所提出的基于 CNN 的模型,该模型整合了来自结肠和直肠的图像特征,在准确区分 UC 患者的 MES 0 和 MES 1 方面表现出卓越的性能。