Suppr超能文献

通过人工智能技术在三维VAD空间上基于脑信号的情绪评估

Evaluation of Emotions from Brain Signals on 3D VAD Space via Artificial Intelligence Techniques.

作者信息

Işık Ümran, Güven Ayşegül, Batbat Turgay

机构信息

Biomedical Engineering Graduate Program, Graduate School of Natural and Applied Sciences, Erciyes University, 38039 Kayseri, Türkiye.

Department of Biomedical Engineering, Engineering Faculty, Erciyes University, 38039 Kayseri, Türkiye.

出版信息

Diagnostics (Basel). 2023 Jun 22;13(13):2141. doi: 10.3390/diagnostics13132141.

Abstract

Recent achievements have made emotion studies a rising field contributing to many areas, such as health technologies, brain-computer interfaces, psychology, etc. Emotional states can be evaluated in valence, arousal, and dominance (VAD) domains. Most of the work uses only VA due to the easiness of differentiation; however, very few studies use VAD like this study. Similarly, segment comparisons of emotion analysis with handcrafted features also use VA space. At this point, we primarily focused on VAD space to evaluate emotions and segmentations. The DEAP dataset is used in this study. A comprehensive analytical approach is implemented with two sub-studies: first, segmentation (Segments I-VIII), and second, binary cross-comparisons and evaluations of eight emotional states, in addition to comparisons of selected segments (III, IV, and V), class separation levels (5, 4-6, and 3-7), and unbalanced and balanced data with SMOTE. In both sub-studies, Wavelet Transform is applied to electroencephalography signals to separate the brain waves into their bands (α, β, γ, and θ bands), twenty-four attributes are extracted, and Sequential Minimum Optimization, K-Nearest Neighbors, Fuzzy Unordered Rule Induction Algorithm, Random Forest, Optimized Forest, Bagging, Random Committee, and Random Subspace are used for classification. In our study, we have obtained high accuracy results, which can be seen in the figures in the second part. The best accuracy result in this study for unbalanced data is obtained for Low Arousal-Low Valence-High Dominance and High Arousal-High Valence-Low Dominance emotion comparisons (Segment III and 4.5-5.5 class separation), and an accuracy rate of 98.94% is obtained with the IBk classifier. Data-balanced results mostly seem to outperform unbalanced results.

摘要

近期的研究成果使情感研究成为一个新兴领域,为健康技术、脑机接口、心理学等诸多领域做出了贡献。情感状态可以在效价、唤醒度和优势度(VAD)维度上进行评估。由于易于区分,大多数研究仅使用效价和唤醒度(VA);然而,像本研究这样使用VAD的研究非常少。同样,基于手工特征的情感分析的片段比较也使用VA空间。在这一点上,我们主要专注于VAD空间来评估情感和片段。本研究使用了DEAP数据集。采用了一种综合分析方法,包括两个子研究:第一,片段划分(片段I - VIII),第二,除了对选定片段(III、IV和V)、类别分离水平(5、4 - 6和3 - 7)以及使用SMOTE的不平衡和平衡数据进行二元交叉比较和八种情感状态的评估。在这两个子研究中,将小波变换应用于脑电图信号,以将脑电波分离成不同频段(α、β、γ和θ频段),提取24个属性,并使用序列最小优化、K近邻、模糊无序规则归纳算法、随机森林、优化森林、装袋法、随机委员会和随机子空间进行分类。在我们的研究中,我们获得了高精度的结果,这可以在第二部分的图表中看到。本研究中不平衡数据的最佳准确率结果是在低唤醒度 - 低效价 - 高优势度和高唤醒度 - 高效价 - 低优势度情感比较(片段III和4.5 - 5.5类别分离)中获得的,使用IBk分类器获得了98.94%的准确率。数据平衡的结果大多似乎优于不平衡的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f0c/10340442/d9c1a619f975/diagnostics-13-02141-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验