Suppr超能文献

从 EEG 预测精确的效价和唤醒值。

Predicting Exact Valence and Arousal Values from EEG.

机构信息

LASIGE, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.

出版信息

Sensors (Basel). 2021 May 14;21(10):3414. doi: 10.3390/s21103414.

Abstract

Recognition of emotions from physiological signals, and in particular from electroencephalography (EEG), is a field within affective computing gaining increasing relevance. Although researchers have used these signals to recognize emotions, most of them only identify a limited set of emotional states (e.g., happiness, sadness, anger, etc.) and have not attempted to predict exact values for valence and arousal, which would provide a wider range of emotional states. This paper describes our proposed model for predicting the exact values of valence and arousal in a subject-independent scenario. To create it, we studied the best features, brain waves, and machine learning models that are currently in use for emotion classification. This systematic analysis revealed that the best prediction model uses a KNN regressor (K = 1) with Manhattan distance, features from the alpha, beta and gamma bands, and the differential asymmetry from the alpha band. Results, using the DEAP, AMIGOS and DREAMER datasets, show that our model can predict valence and arousal values with a low error (MAE < 0.06, RMSE < 0.16) and a strong correlation between predicted and expected values (PCC > 0.80), and can identify four emotional classes with an accuracy of 84.4%. The findings of this work show that the features, brain waves and machine learning models, typically used in emotion classification tasks, can be used in more challenging situations, such as the prediction of exact values for valence and arousal.

摘要

从生理信号,特别是脑电图(EEG)中识别情绪是情感计算领域中一个日益重要的研究方向。虽然研究人员已经使用这些信号来识别情绪,但大多数研究仅识别有限的情绪状态(例如,快乐、悲伤、愤怒等),并且尚未尝试预测效价和唤醒的确切值,这将提供更广泛的情绪状态。本文描述了我们在独立于主体的场景中预测效价和唤醒的确切值的建议模型。为了创建该模型,我们研究了目前用于情感分类的最佳特征、脑电波和机器学习模型。这项系统分析表明,最佳预测模型使用 KNN 回归器(K = 1)和曼哈顿距离、来自 alpha、beta 和 gamma 波段的特征以及 alpha 波段的差分不对称性。使用 DEAP、AMIGOS 和 DREAMER 数据集的结果表明,我们的模型可以以低误差(MAE<0.06,RMSE<0.16)和预测值与期望值之间的强相关性(PCC>0.80)预测效价和唤醒值,并可以以 84.4%的准确率识别出四种情绪类别。这项工作的结果表明,通常用于情感分类任务的特征、脑电波和机器学习模型可以应用于更具挑战性的情况,例如预测效价和唤醒的确切值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/556a/8155937/88b1805facc0/sensors-21-03414-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验