Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
Cells. 2023 Jul 7;12(13):1800. doi: 10.3390/cells12131800.
T cells are critical players in adaptive immunity, driving the tissue injury and organ damage of patients with autoimmune diseases. Consequently, investigations on T cell activation, differentiation, and function are valuable in uncovering the disease pathogenesis, thus exploring promising therapeutics for autoimmune diseases. In recent decades, accumulating studies have pinpointed immunometabolism as the fundamental determinant in controlling T cell fate. Specifically, mitochondria, as a hub of intracellular metabolism, connect glucose, lipid, and amino acid metabolic pathways. Herein, we summarize metabolic adaptations of mitochondrial oxidative phosphorylation and the relevant glucose, lipid, and amino acid metabolism during T cell activation, differentiation, and function. Further, we focused on current updates of the molecular bases for metabolic reprogramming in autoimmune T cells and advances in exploring metabolic-targeted therapeutics against autoimmune diseases. This might facilitate the in-depth understanding of autoimmune pathogeneses and the clinical management of autoimmune diseases.
T 细胞是适应性免疫的关键参与者,导致自身免疫性疾病患者的组织损伤和器官损伤。因此,对 T 细胞激活、分化和功能的研究对于揭示疾病发病机制、探索自身免疫性疾病的有前途的治疗方法具有重要价值。在过去的几十年中,越来越多的研究表明免疫代谢是控制 T 细胞命运的基本决定因素。具体来说,线粒体作为细胞内代谢的枢纽,连接葡萄糖、脂质和氨基酸代谢途径。在此,我们总结了 T 细胞激活、分化和功能过程中线粒体氧化磷酸化和相关葡萄糖、脂质和氨基酸代谢的代谢适应性。此外,我们还重点介绍了自身免疫性 T 细胞代谢重编程的分子基础的最新进展以及针对自身免疫性疾病的代谢靶向治疗的进展。这可能有助于深入了解自身免疫发病机制和自身免疫性疾病的临床管理。