Liu Yueyang, Fang Jiukai, Lin Yuwen, Shi Shengnan, Di Chengzhe, Zhang Shan, Sun Mingqi, Shi Yanpeng, Zhang Yifei
School of Microelectronics, Shandong University, Jinan 250100, China.
Nanomaterials (Basel). 2023 Jun 25;13(13):1935. doi: 10.3390/nano13131935.
In this work, we demonstrate a novel structure that can generate extraordinary optical transmission with a silicon hemisphere placed on a conventional bull's eye structure. There is a single subwavelength aperture surrounded by concentric periodic grooves on a substrate. The extraordinary optical transmission in this work is realized by the coupling of the surface plasmon polaritons in the periodic grooves and the localized electromagnetic field generated by the Mie resonance in the silicon hemisphere. The maximum normalized-to-area transmission peak can reach up to 662 with a decreasing device area and size. The electromagnetic field distribution at different geometry parameters is analyzed to clarify the mechanisms of the work in this paper. Additionally, the use of dielectric material in the aperture can avoid ohmic losses of metal material compared with the conventional one, which may suggest that a wider range of bull's-eye-structure applications is possible.
在这项工作中,我们展示了一种新颖的结构,该结构通过将硅半球放置在传统的靶心结构上能够产生超常光学传输。在衬底上有一个由同心周期性凹槽包围的单个亚波长孔径。这项工作中的超常光学传输是通过周期性凹槽中的表面等离激元极化激元与硅半球中米氏共振产生的局域电磁场的耦合来实现的。随着器件面积和尺寸的减小,最大归一化到面积的传输峰值可达662。分析了不同几何参数下的电磁场分布,以阐明本文工作的机制。此外,与传统结构相比,在孔径中使用介电材料可以避免金属材料的欧姆损耗,这可能意味着靶心结构有更广泛的应用可能性。