Suppr超能文献

通过RNA测序分析探索[具体植物名称]对盐碱胁迫响应中涉及的调控途径和关键基因

Exploration of the Regulatory Pathways and Key Genes Involved in the Response to Saline-Alkali Stress in via RNA-Seq Analysis.

作者信息

Xue Jukun, Sun Hu, Zhou Xuemei, Guo Huiyan, Wang Yucheng

机构信息

Department of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China.

College of Forestry, Shenyang Agricultural University, Shenyang 110866, China.

出版信息

Plants (Basel). 2023 Jun 24;12(13):2435. doi: 10.3390/plants12132435.

Abstract

The pH of saline-alkali soil is high because of carbonate salts, and the deleterious effects of saline-alkali soil on the growth of plants are greater than those of saline soil. Few studies have examined the saline-alkali tolerance of at the molecular level. To clarify the regulatory mechanism underlying saline-alkali tolerance in , RNA sequencing analysis of seedlings treated with NaHCO was conducted. Differences in gene expression in the roots of seedlings under saline-alkali stress (induced via NaHCO) for 3 h and 6 h were characterized, and a total of 595 and 607 alkali stress-responsive genes were identified, respectively. Most differentially expressed genes were involved in stress, signal transduction, secondary metabolic process, regulation of jasmonic acid, and the abiotic stimulus signaling pathway. The single nucleotide polymorphism loci in the differentially expressed genes were associated with the alkaline-salt tolerance in birch germplasm. In addition, birch plants overexpressing and were obtained using the -mediated transient transformation method, and these two genes were found to play key roles in saline-alkali tolerance. Additional study revealed that and can increase resistance to saline-alkali stress by enhancing reactive oxygen species scavenging and inhibiting cell death in birch plants. The results of this study enhance our understanding of the saline-alkali stress tolerance of at the molecular level, and provide several key genes that could be used in the breeding of birch plants in the future.

摘要

盐碱土由于碳酸盐盐类导致pH值较高,并且盐碱土对植物生长的有害影响大于盐土。很少有研究在分子水平上研究[植物名称未明确]的耐盐碱能力。为了阐明[植物名称未明确]耐盐碱的调控机制,对用NaHCO₃处理的[植物名称未明确]幼苗进行了RNA测序分析。对盐碱胁迫(通过NaHCO₃诱导)3小时和6小时的[植物名称未明确]幼苗根部的基因表达差异进行了表征,分别鉴定出总共595个和607个碱胁迫响应基因。大多数差异表达基因参与胁迫、信号转导、次生代谢过程、茉莉酸调控以及非生物刺激信号通路。差异表达基因中的单核苷酸多态性位点与桦树种质的耐盐碱能力相关。此外,使用农杆菌介导的瞬时转化方法获得了过表达[基因名称未明确]和[基因名称未明确]的桦树植株,发现这两个基因在耐盐碱中起关键作用。进一步研究表明,[基因名称未明确]和[基因名称未明确]可以通过增强活性氧清除和抑制桦树植株细胞死亡来提高对盐碱胁迫的抗性。本研究结果增进了我们在分子水平上对[植物名称未明确]耐盐碱胁迫的理解,并提供了几个未来可用于桦树植物育种的关键基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4236/10346881/774cd6cb3676/plants-12-02435-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验