Suppr超能文献

机械拉伸对非晶态和半结晶热塑性聚酰亚胺热导率的影响:原子模拟

The Effect of Mechanical Elongation on the Thermal Conductivity of Amorphous and Semicrystalline Thermoplastic Polyimides: Atomistic Simulations.

作者信息

Nazarychev Victor M, Lyulin Sergey V

机构信息

Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect V.O. 31, 199004 St. Petersburg, Russia.

出版信息

Polymers (Basel). 2023 Jul 1;15(13):2926. doi: 10.3390/polym15132926.

Abstract

Over the past few decades, the enhancement of polymer thermal conductivity has attracted considerable attention in the scientific community due to its potential for the development of new thermal interface materials (TIM) for both electronic and electrical devices. The mechanical elongation of polymers may be considered as an appropriate tool for the improvement of heat transport through polymers without the necessary addition of nanofillers. Polyimides (PIs) in particular have some of the best thermal, dielectric, and mechanical properties, as well as radiation and chemical resistance. They can therefore be used as polymer binders in TIM without compromising their dielectric properties. In the present study, the effects of uniaxial deformation on the thermal conductivity of thermoplastic PIs were examined for the first time using atomistic computer simulations. We believe that this approach will be important for the development of thermal interface materials based on thermoplastic PIs with improved thermal conductivity properties. Current research has focused on the analysis of three thermoplastic PIs: two semicrystalline, namely BPDA-P3 and R-BAPB; and one amorphous, ULTEM. To evaluate the impact of uniaxial deformation on the thermal conductivity, samples of these PIs were deformed up to 200% at a temperature of 600 K, slightly above the melting temperatures of BPDA-P3 and R-BAPB. The thermal conductivity coefficients of these PIs increased in the glassy state and above the glass transition point. Notably, some improvement in the thermal conductivity of the amorphous polyimide ULTEM was achieved. Our study demonstrates that the thermal conductivity coefficient is anisotropic in different directions with respect to the deformation axis and shows a significant increase in both semicrystalline and amorphous PIs in the direction parallel to the deformation. Both types of structural ordering (self-ordering of semicrystalline PI and mechanical elongation) led to the same significant increase in thermal conductivity coefficient.

摘要

在过去几十年中,聚合物热导率的提高在科学界引起了相当大的关注,因为它有潜力开发用于电子和电气设备的新型热界面材料(TIM)。聚合物的机械拉伸可被视为一种合适的手段,用于在无需添加纳米填料的情况下改善聚合物的热传输。特别是聚酰亚胺(PI)具有一些最佳的热、介电和机械性能,以及耐辐射和耐化学性。因此,它们可以用作TIM中的聚合物粘合剂,而不会损害其介电性能。在本研究中,首次使用原子计算机模拟研究了单轴变形对热塑性PI热导率的影响。我们认为,这种方法对于开发具有改进热导率性能的基于热塑性PI的热界面材料将具有重要意义。当前的研究集中在对三种热塑性PI的分析上:两种半结晶的,即BPDA-P3和R-BAPB;以及一种非晶态的ULTEM。为了评估单轴变形对热导率的影响,将这些PI的样品在600 K的温度下变形至200%,该温度略高于BPDA-P3和R-BAPB的熔点。这些PI的热导率系数在玻璃态和高于玻璃化转变点时增加。值得注意的是,非晶态聚酰亚胺ULTEM的热导率有了一定程度的提高。我们的研究表明,热导率系数在相对于变形轴的不同方向上是各向异性的,并且在平行于变形的方向上,半结晶和非晶态PI的热导率都显著增加。两种结构有序化类型(半结晶PI的自有序化和机械拉伸)都导致热导率系数有相同程度的显著增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3370/10346438/05d7f181a8cf/polymers-15-02926-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验