Suppr超能文献

块状聚酰亚胺的热性能:计算机模拟与实验的见解

Thermal properties of bulk polyimides: insights from computer modeling versus experiment.

作者信息

Lyulin Sergey V, Larin Sergey V, Gurtovenko Andrey A, Nazarychev Victor M, Falkovich Stanislav G, Yudin Vladimir E, Svetlichnyi Valentin M, Gofman Iosif V, Lyulin Alexey V

机构信息

Institute of Macromolecular Compounds, Russian Academy of Sciences, Bol'shoi pr. 31 (V.O.), St. Petersburg, 199004 Russia.

出版信息

Soft Matter. 2014 Feb 28;10(8):1224-32. doi: 10.1039/c3sm52521j.

Abstract

Due to the great importance for many industrial applications it is crucial from the point of view of theoretical description to reproduce thermal properties of thermoplastic polyimides as accurate as possible in order to establish "chemical structure-physical properties" relationships of new materials. In this paper we employ differential scanning calorimetry, dilatometry, and atomistic molecular dynamics (MD) simulations to explore whether the state-of-the-art computer modeling can serve as a precise tool for probing thermal properties of polyimides with highly polar groups. For this purpose the polyimide R-BAPS based on dianhydride 1,3-bis(3',4-dicarboxyphenoxy)benzene (dianhydride R) and diamine 4,4'-bis(4''-aminophenoxy)biphenyl sulphone) (diamine BAPS) was synthesized and extensively studied. Overall, our findings show that the widely used glass-transition temperature Tg evaluated from MD simulations should be employed with great caution for verification of the polyimide computational models against experimental data: in addition to the well-known impact of the cooling rate on the glass-transition temperature, correct definition of Tg requires cooling that starts from very high temperatures (no less than 800 K for considered polyimides) and accurate evaluation of the appropriate cooling rate, otherwise the errors in the measured values of Tg become undefined. In contrast to the glass-transition temperature, the volumetric coefficient of thermal expansion (CTE) does not depend on the cooling rate in the low-temperature domain (T < Tg) so that comparison of computational and experimental values of CTE provides a much safer way for proper validation of the theoretical model when electrostatic interactions are taken into account explicitly. Remarkably, this conclusion is most likely of generic nature: we show that it also holds for the commercial polyimide EXTEM, another polyimide with a similar chemical structure.

摘要

由于在许多工业应用中具有重要意义,从理论描述的角度来看,尽可能准确地再现热塑性聚酰亚胺的热性能以建立新材料的“化学结构 - 物理性能”关系至关重要。在本文中,我们采用差示扫描量热法、热膨胀法和原子分子动力学(MD)模拟来探究当前最先进的计算机建模是否可作为探测具有高极性基团的聚酰亚胺热性能的精确工具。为此,合成并广泛研究了基于二酐1,3 - 双(3',4 - 二羧基苯氧基)苯(二酐R)和二胺4,4'-双(4'' - 氨基苯氧基)联苯砜(二胺BAPS)的聚酰亚胺R - BAPS。总体而言,我们的研究结果表明,从MD模拟评估得到的广泛使用的玻璃化转变温度Tg在根据实验数据验证聚酰亚胺计算模型时应极其谨慎地使用:除了冷却速率对玻璃化转变温度的众所周知的影响外,Tg的正确定义需要从非常高的温度(对于所考虑的聚酰亚胺不低于800 K)开始冷却并准确评估适当的冷却速率,否则Tg测量值中的误差将变得不确定。与玻璃化转变温度不同,体积热膨胀系数(CTE)在低温域(T < Tg)不依赖于冷却速率,因此当明确考虑静电相互作用时,比较CTE的计算值和实验值为正确验证理论模型提供了一种更可靠的方法。值得注意的是,这一结论很可能具有普遍性质:我们表明它也适用于商业聚酰亚胺EXTEM,另一种具有相似化学结构的聚酰亚胺。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验