Suppr超能文献

使用递归信号平均和多阶段小波去噪方法增强稳健的手臂阻抗心动图信号质量,用于长期心脏收缩力监测臂带。

Robust Arm Impedocardiography Signal Quality Enhancement Using Recursive Signal Averaging and Multi-Stage Wavelet Denoising Methods for Long-Term Cardiac Contractility Monitoring Armbands.

机构信息

School of Engineering, Ulster University, Belfast BT15 1AP, UK.

出版信息

Sensors (Basel). 2023 Jun 25;23(13):5892. doi: 10.3390/s23135892.

Abstract

Impedance cardiography (ICG) is a low-cost, non-invasive technique that enables the clinical assessment of haemodynamic parameters, such as cardiac output and stroke volume (SV). Conventional ICG recordings are taken from the patient's thorax. However, access to ICG vital signs from the upper-arm brachial artery (as an associated surrogate) can enable user-convenient wearable armband sensor devices to provide an attractive option for gathering ICG trend-based indicators of general health, which offers particular advantages in ambulatory long-term monitoring settings. This study considered the upper arm ICG and control Thorax-ICG recordings data from 15 healthy subject cases. A prefiltering stage included a third-order Savitzky-Golay finite impulse response (FIR) filter, which was applied to the raw ICG signals. Then, a multi-stage wavelet-based denoising strategy on a beat-by-beat (BbyB) basis, which was supported by a recursive signal-averaging optimal thresholding adaptation algorithm for Arm-ICG signals, was investigated for robust signal quality enhancement. The performance of the BbyB ICG denoising was evaluated for each case using a 700 ms frame centred on the heartbeat ICG pulse. This frame was extracted from a 600-beat ensemble signal-averaged ICG and was used as the noiseless signal reference vector (gold standard frame). Furthermore, in each subject case, enhanced Arm-ICG and Thorax-ICG above a threshold of correlation of 0.95 with the noiseless vector enabled the analysis of beat inclusion rate (BIR%), yielding an average of 80.9% for Arm-ICG and 100% for Thorax-ICG, and BbyB values of the ICG waveform feature metrics A, B, C and VET accuracy and precision, yielding respective error rates (ER%) of 0.83%, 11.1%, 3.99% and 5.2% for Arm-IG, and 0.41%, 3.82%, 1.66% and 1.25% for Thorax-ICG, respectively. Hence, the functional relationship between ICG metrics within and between the arm and thorax recording modes could be characterised and the linear regression (Arm-ICG vs. Thorax-ICG) trends could be analysed. Overall, it was found in this study that recursive averaging, set with a 36 ICG beats buffer size, was the best Arm-ICG BbyB denoising process, with an average of less than 3.3% in the Arm-ICG time metrics error rate. It was also found that the arm SV versus thorax SV had a linear regression coefficient of determination (R) of 0.84.

摘要

阻抗心动描记术(ICG)是一种低成本、非侵入性的技术,可用于临床评估心输出量和每搏量(SV)等血流动力学参数。传统的 ICG 记录是从患者的胸部获取的。然而,从上臂肱动脉获取 ICG 生命体征(作为相关替代指标)可以使方便用户的可穿戴臂带传感器设备成为采集 ICG 趋势的一般健康指标的理想选择,在门诊长期监测环境中具有特别优势。本研究考虑了 15 名健康受试者的上臂 ICG 和对照 Thorax-ICG 记录数据。预滤波阶段包括三阶 Savitzky-Golay 有限脉冲响应(FIR)滤波器,该滤波器应用于原始 ICG 信号。然后,研究了一种基于多阶段小波的逐拍(BbyB)去噪策略,该策略由一种递归信号平均最优阈值自适应算法支持,用于增强 Arm-ICG 信号的稳健信号质量。使用从 600 拍集合信号平均 ICG 中提取的 700ms 帧,评估了每例 ICG 的 BbyB 去噪性能,该帧位于 ICG 脉搏的心跳中心。该帧用作无噪声信号参考向量(黄金标准帧)。此外,在每个受试者案例中,通过与无噪声向量的相关性高于 0.95 的阈值增强 Arm-ICG 和 Thorax-ICG,可分析拍纳入率(BIR%),得到 Arm-ICG 的平均值为 80.9%,Thorax-ICG 的平均值为 100%,ICG 波形特征指标 A、B、C 和 VET 的准确性和精度的 BbyB 值,分别得到 Arm-IG 的误差率(ER%)为 0.83%、11.1%、3.99%和 5.2%,以及 Thorax-ICG 的 ER%分别为 0.41%、3.82%、1.66%和 1.25%。因此,可以描述臂部和胸部记录模式之间和内部的 ICG 指标的功能关系,并分析线性回归(Arm-ICG 与 Thorax-ICG)趋势。总的来说,本研究发现,使用 36 个 ICG 拍缓冲区大小的递归平均是最佳的 Arm-ICG BbyB 去噪过程,Arm-ICG 时间指标的平均误差率小于 3.3%。还发现臂部 SV 与胸部 SV 的线性回归决定系数(R)为 0.84。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/684c/10346659/dc49693de99a/sensors-23-05892-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验