Suppr超能文献

卫星 SAR 观测目标的高效超分辨率方法。

Efficient Super-Resolution Method for Targets Observed by Satellite SAR.

机构信息

Korea Aerospace Research Institute, 169-84, Gwahak-ro, Daejeon 34133, Republic of Korea.

出版信息

Sensors (Basel). 2023 Jun 25;23(13):5893. doi: 10.3390/s23135893.

Abstract

This study presents an efficient super-resolution (SR) method for targets observed by satellite synthetic aperture radar (SAR). First, a small target image is extracted from a large-scale SAR image and undergoes proper preprocessing. The preprocessing step is adaptively designed depending on the types of movements of targets. Next, the principal scattering centers of targets are extracted using the compressive sensing technique. Subsequently, an impulse response function (IRF) of the satellite SAR system (IRF-S) is generated using a SAR image of a corner reflector located at the calibration site. Then, the spatial resolution of the IRF-S is improved by the spectral estimation technique. Finally, according to the SAR signal model, the super-resolved IRF-S is combined with the extracted scattering centers to generate a super-resolved target image. In our experiments, the SR capabilities for various targets were investigated using quantitative and qualitative analysis. Compared with conventional SAR SR methods, the proposed scheme exhibits greater robustness towards improvement of the spatial resolution of the target image when the degrees of SR are high. Additionally, the proposed scheme has faster computation time (CT) than other SR algorithms, irrespective of the degree of SR. The novelties of this study can be summarized as follows: (1) the practical design of an efficient SAR SR scheme that has robustness at a high SR degree; (2) the application of proper preprocessing considering the types of movements of targets (i.e., stationary, moderate motion, and complex motion) in SAR SR processing; (3) the effective evaluation of SAR SR capability using various metrics such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), focus quality parameters, and CT, as well as qualitative analysis.

摘要

本研究提出了一种用于卫星合成孔径雷达(SAR)观测目标的高效超分辨率(SR)方法。首先,从小规模 SAR 图像中提取小目标图像,并进行适当的预处理。预处理步骤根据目标运动的类型自适应设计。接下来,使用压缩感知技术提取目标的主要散射中心。随后,使用位于校准点的角反射器的 SAR 图像生成卫星 SAR 系统的脉冲响应函数(IRF-S)。然后,通过谱估计技术提高 IRF-S 的空间分辨率。最后,根据 SAR 信号模型,将超分辨 IRF-S 与提取的散射中心相结合,生成超分辨目标图像。在我们的实验中,通过定量和定性分析研究了各种目标的 SR 能力。与传统的 SAR SR 方法相比,当 SR 程度较高时,所提出的方案在提高目标图像的空间分辨率方面具有更强的稳健性。此外,无论 SR 程度如何,所提出的方案的计算时间(CT)都比其他 SR 算法快。本研究的新颖之处可以概括为:(1)设计了一种高效的 SAR SR 方案,在高 SR 度下具有稳健性;(2)在 SAR SR 处理中考虑目标运动类型(即静止、中等运动和复杂运动)进行适当的预处理;(3)使用各种指标(如峰值信噪比(PSNR)、结构相似性指数(SSIM)、聚焦质量参数和 CT)以及定性分析,有效评估 SAR SR 能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ec/10346362/17b8ae691869/sensors-23-05893-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验