Université Laval, Quebec City, QC G1V 0A6, Canada.
Centre for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada.
Sensors (Basel). 2023 Jun 30;23(13):6056. doi: 10.3390/s23136056.
Assistive robots are tools that people living with upper body disabilities can leverage to autonomously perform Activities of Daily Living (ADL). Unfortunately, conventional control methods still rely on low-dimensional, easy-to-implement interfaces such as joysticks that tend to be unintuitive and cumbersome to use. In contrast, vocal commands may represent a viable and intuitive alternative. This work represents an important step toward providing a viable vocal interface for people living with upper limb disabilities by proposing a novel lightweight vocal command recognition system. The proposed model leverages the MobileNet2 architecture, augmenting it with a novel approach to the self-attention mechanism, achieving a new state-of-the-art performance for Keyword Spotting (KWS) on the Google Speech Commands Dataset (GSCD). Moreover, this work presents a new dataset, referred to as the French Speech Commands Dataset (FSCD), comprising 4963 vocal command utterances. Using the GSCD as the source, we used Transfer Learning (TL) to adapt the model to this cross-language task. TL has been shown to significantly improve the model performance on the FSCD. The viability of the proposed approach is further demonstrated through real-life control of a robotic arm by four healthy participants using both the proposed vocal interface and a joystick.
辅助机器人是上肢残疾人士可以自主执行日常生活活动 (ADL) 的工具。遗憾的是,传统的控制方法仍然依赖于低维、易于实现的接口,如操纵杆,这些接口往往不直观且使用起来很繁琐。相比之下,语音命令可能代表一种可行且直观的替代方法。这项工作通过提出一种新颖的轻量级语音命令识别系统,代表了为上肢残疾人士提供可行语音接口的重要一步。所提出的模型利用了 MobileNet2 架构,并通过一种新颖的方法对自注意力机制进行了增强,从而在 Google Speech Commands Dataset (GSCD) 上的关键字识别 (KWS) 方面实现了新的最先进性能。此外,这项工作还提出了一个新的数据集,称为 French Speech Commands Dataset (FSCD),包含 4963 个语音命令发音。我们使用 GSCD 作为源,使用迁移学习 (TL) 将模型适用于这项跨语言任务。TL 已被证明可以显著提高模型在 FSCD 上的性能。通过四名健康参与者使用所提出的语音接口和操纵杆对机器人手臂进行实时控制,进一步证明了所提出方法的可行性。