Suppr超能文献

通过软质气动夹爪的钳形抓取实现先进的刚度传感

Advanced Stiffness Sensing through the Pincer Grasping of Soft Pneumatic Grippers.

作者信息

Sithiwichankit Chaiwuth, Chanchareon Ratchatin

机构信息

Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.

出版信息

Sensors (Basel). 2023 Jul 2;23(13):6094. doi: 10.3390/s23136094.

Abstract

In this study, a comprehensive approach for sensing object stiffness through the pincer grasping of soft pneumatic grippers (SPGs) is presented. This study was inspired by the haptic sensing of human hands that allows us to perceive object properties through grasping. Many researchers have tried to imitate this capability in robotic grippers. The association between gripper performance and object reaction must be determined for this purpose. However, soft pneumatic actuators (SPA), the main components of SPGs, are extremely compliant. SPA compliance makes the determination of the association challenging. Methodologically, the connection between the behaviors of grasped objects and those of SPAs was clarified. A new concept of SPA modeling was then introduced. A method for stiffness sensing through SPG pincer grasping was developed based on this connection, and demonstrated on four samples. This method was validated through compression testing on the same samples. The results indicate that the proposed method yielded similar stiffness trends with slight deviations in compression testing. A main limitation in this study was the occlusion effect, which leads to dramatic deviations when grasped objects greatly deform. This is the first study to enable stiffness sensing and SPG grasping to be carried out in the same attempt. This study makes a major contribution to research on soft robotics by progressing the role of sensing for SPG grasping and object classification by offering an efficient method for acquiring another effective class of classification input. Ultimately, the proposed framework shows promise for future applications in inspecting and classifying visually indistinguishable objects.

摘要

在本研究中,提出了一种通过软气动夹具(SPG)的钳形抓取来感知物体刚度的综合方法。本研究的灵感来源于人类手部的触觉感知,它使我们能够通过抓握来感知物体的属性。许多研究人员试图在机器人夹具中模仿这种能力。为此,必须确定夹具性能与物体反应之间的关联。然而,软气动执行器(SPA)作为SPG的主要部件,具有极高的柔顺性。SPA的柔顺性使得确定这种关联具有挑战性。从方法学角度出发,阐明了被抓取物体行为与SPA行为之间的联系。随后引入了一种新的SPA建模概念。基于这种联系,开发了一种通过SPG钳形抓取进行刚度传感的方法,并在四个样本上进行了演示。通过对相同样本的压缩测试对该方法进行了验证。结果表明,所提出的方法在压缩测试中产生了相似的刚度趋势,只是存在轻微偏差。本研究的一个主要局限性是遮挡效应,当被抓取物体发生较大变形时,会导致显著偏差。这是第一项能够在同一次尝试中实现刚度传感和SPG抓取的研究。本研究通过推进SPG抓取和物体分类的传感作用,为软机器人技术的研究做出了重大贡献,提供了一种获取另一类有效分类输入的有效方法。最终,所提出的框架在检查和分类视觉上难以区分的物体方面显示出未来应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c80b/10346675/30ba7e8f3eaf/sensors-23-06094-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验