College of Information Engineering, Henan University of Science and Technology, Kaiyuan Avenue, Luoyang 471023, China.
Sensors (Basel). 2023 Jul 2;23(13):6102. doi: 10.3390/s23136102.
Good data feature representation and high precision classifiers are the key steps for pattern recognition. However, when the data distributions between testing samples and training samples do not match, the traditional feature extraction methods and classification models usually degrade. In this paper, we propose a domain adaptation approach to handle this problem. In our method, we first introduce cross-domain mean approximation (CDMA) into semi-supervised discriminative analysis (SDA) and design semi-supervised cross-domain mean discriminative analysis (SCDMDA) to extract shared features across domains. Secondly, a kernel extreme learning machine (KELM) is applied as a subsequent classifier for the classification task. Moreover, we design a cross-domain mean constraint term on the source domain into KELM and construct a kernel transfer extreme learning machine (KTELM) to further promote knowledge transfer. Finally, the experimental results from four real-world cross-domain visual datasets prove that the proposed method is more competitive than many other state-of-the-art methods.
好的数据特征表示和高精度分类器是模式识别的关键步骤。然而,当测试样本和训练样本之间的数据分布不匹配时,传统的特征提取方法和分类模型通常会降级。在本文中,我们提出了一种域自适应方法来处理这个问题。在我们的方法中,我们首先将跨域均值逼近(CDMA)引入半监督判别分析(SDA)中,并设计半监督跨域均值判别分析(SCDMDA)来提取跨域共享特征。其次,将核极端学习机(KELM)应用于分类任务的后续分类器。此外,我们在 KELM 中设计了一个源域上的跨域均值约束项,并构建了一个核传递极端学习机(KTELM),以进一步促进知识迁移。最后,来自四个真实跨域视觉数据集的实验结果证明,所提出的方法比许多其他最先进的方法更具竞争力。