Suppr超能文献

基于深度学习的苹果计数,利用所提出的飞行机器人系统进行产量预测。

Deep Learning Based Apples Counting for Yield Forecast Using Proposed Flying Robotic System.

作者信息

Yıldırım Şahin, Ulu Burak

机构信息

Department of Mechatronic Engineering, Erciyes University, Kayseri 38039, Turkey.

出版信息

Sensors (Basel). 2023 Jul 5;23(13):6171. doi: 10.3390/s23136171.

Abstract

Nowadays, Convolution Neural Network (CNN) based deep learning methods are widely used in detecting and classifying fruits from faults, color and size characteristics. In this study, two different neural network model estimators are employed to detect apples using the Single-Shot Multibox Detection (SSD) Mobilenet and Faster Region-CNN (Faster R-CNN) model architectures, with the custom dataset generated from the red apple species. Each neural network model is trained with created dataset using 4000 apple images. With the trained model, apples are detected and counted autonomously using the developed Flying Robotic System (FRS) in a commercially produced apple orchard. In this way, it is aimed that producers make accurate yield forecasts before commercial agreements. In this paper, SSD-Mobilenet and Faster R-CNN architecture models trained with COCO datasets referenced in many studies, and SSD-Mobilenet and Faster R-CNN models trained with a learning rate ranging from 0.015-0.04 using the custom dataset are compared experimentally in terms of performance. In the experiments implemented, it is observed that the accuracy rates of the proposed models increased to the level of 93%. Consequently, it has been observed that the Faster R-CNN model, which is developed, makes extremely successful determinations by lowering the loss value below 0.1.

摘要

如今,基于卷积神经网络(CNN)的深度学习方法被广泛应用于根据缺陷、颜色和大小特征对水果进行检测和分类。在本研究中,采用了两种不同的神经网络模型估计器,使用从红苹果品种生成的自定义数据集,通过单阶段多框检测(SSD)MobileNet和更快区域卷积神经网络(Faster R-CNN)模型架构来检测苹果。每个神经网络模型都使用4000张苹果图像的创建数据集进行训练。利用训练好的模型,在商业化生产的苹果园中使用开发的飞行机器人系统(FRS)对苹果进行自动检测和计数。通过这种方式,旨在让生产者在商业协议之前做出准确的产量预测。在本文中,对许多研究中引用的使用COCO数据集训练的SSD-MobileNet和Faster R-CNN架构模型,以及使用自定义数据集、学习率范围为0.015 - 0.04训练的SSD-MobileNet和Faster R-CNN模型在性能方面进行了实验比较。在实施的实验中,观察到所提出模型的准确率提高到了93%的水平。因此,观察到所开发的Faster R-CNN模型通过将损失值降低到0.1以下做出了极其成功的判定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2053/10346156/a9ca35b6285b/sensors-23-06171-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验