Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China.
Sensors (Basel). 2023 Jul 6;23(13):6189. doi: 10.3390/s23136189.
This paper proposes a method for accurate 3D posture sensing of the soft actuators, which could be applied to the closed-loop control of soft robots. To achieve this, the method employs an array of miniaturized sponge resistive materials along the soft actuator, which uses long short-term memory (LSTM) neural networks to solve the end-to-end 3D posture for the soft actuators. The method takes into account the hysteresis of the soft robot and non-linear sensing signals from the flexible bending sensors. The proposed approach uses a flexible bending sensor made from a thin layer of conductive sponge material designed for posture sensing. The LSTM network is used to model the posture of the soft actuator. The effectiveness of the method has been demonstrated on a finger-size 3 degree of freedom (DOF) pneumatic bellow-shaped actuator, with nine flexible sponge resistive sensors placed on the soft actuator's outer surface. The sensor-characterizing results show that the maximum bending torque of the sensor installed on the actuator is 4.7 Nm, which has an insignificant impact on the actuator motion based on the working space test of the actuator. Moreover, the sensors exhibit a relatively low error rate in predicting the actuator tip position, with error percentages of 0.37%, 2.38%, and 1.58% along the x-, y-, and z-axes, respectively. This work is expected to contribute to the advancement of soft robot dynamic posture perception by using thin sponge sensors and LSTM or other machine learning methods for control.
本文提出了一种用于精确感知软致动器三维姿态的方法,该方法可应用于软机器人的闭环控制。为实现这一目标,该方法在软致动器上沿其布置了一组微型海绵电阻材料,利用长短期记忆(LSTM)神经网络来解决软致动器的端到端三维姿态问题。该方法考虑了软机器人的滞后性和来自柔性弯曲传感器的非线性传感信号。该方法使用了一种由薄导电海绵材料制成的柔性弯曲传感器,用于姿态感测。LSTM 网络用于对软致动器的姿态进行建模。该方法已在一个手指大小的三自由度(DOF)气动波纹管致动器上得到验证,在软致动器外表面上放置了九个柔性海绵电阻传感器。传感器特性测试结果表明,安装在致动器上的传感器的最大弯曲扭矩为 4.7 Nm,基于致动器工作空间测试,这对致动器的运动没有显著影响。此外,传感器在预测致动器末端位置方面具有较低的误差率,在 x、y 和 z 轴上的误差百分比分别为 0.37%、2.38%和 1.58%。这项工作有望通过使用薄海绵传感器和 LSTM 或其他机器学习方法进行控制,推动软机器人动态姿态感知的发展。