Suppr超能文献

操作者眼动疲劳检测数据集:基于眼动、心率数据和视频信息的操作者疲劳检测数据集。

OperatorEYEVP: Operator Dataset for Fatigue Detection Based on Eye Movements, Heart Rate Data, and Video Information.

机构信息

Institute of Cognitive Neuroscience, HSE University, Moscow 101000, Russia.

Faculty of Physics and Mathematics and Natural Sciences, Peoples' Friendship University of Russia, Moscow 117198, Russia.

出版信息

Sensors (Basel). 2023 Jul 6;23(13):6197. doi: 10.3390/s23136197.

Abstract

Detection of fatigue is extremely important in the development of different kinds of preventive systems (such as driver monitoring or operator monitoring for accident prevention). The presence of fatigue for this task should be determined with physiological and objective behavioral indicators. To develop an effective model of fatigue detection, it is important to record a dataset with people in a state of fatigue as well as in a normal state. We carried out data collection using an eye tracker, a video camera, a stage camera, and a heart rate monitor to record a different kind of signal to analyze them. In our proposed dataset, 10 participants took part in the experiment and recorded data 3 times a day for 8 days. They performed different types of activity (choice reaction time, reading, correction test Landolt rings, playing Tetris), imitating everyday tasks. Our dataset is useful for studying fatigue and finding indicators of its manifestation. We have analyzed datasets that have public access to find the best for this task. Each of them contains data of eye movements and other types of data. We evaluated each of them to determine their suitability for fatigue studies, but none of them fully fit the fatigue detection task. We evaluated the recorded dataset by calculating the correspondences between eye-tracking data and CRT (choice reaction time) that show the presence of fatigue.

摘要

疲劳检测在开发各种预防系统(如驾驶员监控或操作员监控以预防事故)中非常重要。为了完成这项任务,应使用生理和客观行为指标来确定疲劳的存在。为了开发有效的疲劳检测模型,记录处于疲劳状态和正常状态的人的数据集非常重要。我们使用眼动追踪器、摄像机、舞台摄像机和心率监测器来收集数据,以记录不同类型的信号进行分析。在我们提出的数据集里,有 10 名参与者参与了实验,他们每天记录 3 次数据,持续 8 天。他们模拟了日常任务来执行不同类型的活动(选择反应时间、阅读、朗道环校正测试、玩俄罗斯方块)。我们的数据集可用于研究疲劳并寻找其表现的指标。我们分析了具有公共访问权限的数据集,以找到最适合此任务的数据集。每个数据集都包含眼动数据和其他类型的数据。我们评估了每个数据集,以确定它们是否适合疲劳研究,但没有一个数据集完全适合疲劳检测任务。我们通过计算眼动追踪数据和 CRT(选择反应时间)之间的对应关系来评估记录的数据集,以显示疲劳的存在。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d38b/10347254/c4acbc12d30d/sensors-23-06197-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验