Suppr超能文献

凝视自然:用于研究日常活动中眼睛和头部协调的数据集。

Gaze-in-wild: A dataset for studying eye and head coordination in everyday activities.

机构信息

Chester F. Carlson Center for Imaging Science, RIT, Rochester, NY, USA.

Golisano College of Computing and Information Sciences, RIT, Rochester, NY, USA.

出版信息

Sci Rep. 2020 Feb 13;10(1):2539. doi: 10.1038/s41598-020-59251-5.

Abstract

The study of gaze behavior has primarily been constrained to controlled environments in which the head is fixed. Consequently, little effort has been invested in the development of algorithms for the categorization of gaze events (e.g. fixations, pursuits, saccade, gaze shifts) while the head is free, and thus contributes to the velocity signals upon which classification algorithms typically operate. Our approach was to collect a novel, naturalistic, and multimodal dataset of eye + head movements when subjects performed everyday tasks while wearing a mobile eye tracker equipped with an inertial measurement unit and a 3D stereo camera. This Gaze-in-the-Wild dataset (GW) includes eye + head rotational velocities (deg/s), infrared eye images and scene imagery (RGB + D). A portion was labelled by coders into gaze motion events with a mutual agreement of 0.74 sample based Cohen's κ. This labelled data was used to train and evaluate two machine learning algorithms, Random Forest and a Recurrent Neural Network model, for gaze event classification. Assessment involved the application of established and novel event based performance metrics. Classifiers achieve ~87% human performance in detecting fixations and saccades but fall short (50%) on detecting pursuit movements. Moreover, pursuit classification is far worse in the absence of head movement information. A subsequent analysis of feature significance in our best performing model revealed that classification can be done using only the magnitudes of eye and head movements, potentially removing the need for calibration between the head and eye tracking systems. The GW dataset, trained classifiers and evaluation metrics will be made publicly available with the intention of facilitating growth in the emerging area of head-free gaze event classification.

摘要

眼动行为的研究主要局限于头部固定的受控环境中。因此,很少有人致力于开发在头部自由时对眼动事件(例如注视、追踪、扫视、眼跳)进行分类的算法,而这些算法会影响到分类算法通常所依赖的速度信号。我们的方法是在佩戴配备惯性测量单元和 3D 立体摄像机的移动眼动追踪器的受试者执行日常任务时,收集新颖的、自然的和多模态的眼+头运动数据集。这个“野外眼动(Gaze-in-the-Wild,GW)”数据集包括眼+头的旋转速度(deg/s)、红外眼图像和场景图像(RGB+D)。一部分数据由编码员根据基于样本的 Cohen's κ 一致性(0.74)标记为眼动事件。使用标记数据来训练和评估两种机器学习算法,随机森林和递归神经网络模型,以进行眼动事件分类。评估涉及应用既定和新颖的基于事件的性能指标。分类器在检测注视和扫视方面的表现接近人类(~87%),但在检测追踪运动方面的表现不佳(50%)。此外,在没有头部运动信息的情况下,追踪的分类效果更差。我们表现最佳的模型中的特征重要性分析表明,仅使用眼睛和头部运动的幅度就可以进行分类,从而可能无需在头部和眼动跟踪系统之间进行校准。GW 数据集、训练的分类器和评估指标将公开提供,目的是促进新兴的无需头部的眼动事件分类领域的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc93/7018838/14ab584b2bce/41598_2020_59251_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验