Newton Turner D, Li Keyan, Sharma Jyoti, Champagne Pier Alexandre, Pluth Michael D
Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon Eugene Oregon 97403-1253 USA
Department of Chemistry and Environmental Science, New Jersey Institute of Technology Newark New Jersey 07103 USA
Chem Sci. 2023 Jun 20;14(27):7581-7588. doi: 10.1039/d3sc01936e. eCollection 2023 Jul 12.
Hydrogen selenide (HSe) is a possible bioregulator, potential gasotransmitter, and important precursor in biological organoselenium compound synthesis. Early tools for HSe research have benefitted from available mechanistic understanding of analogous small molecules developed for detecting or delivering HS. A now common approach for HS delivery is the use of small molecule thiocarbamates that can be engineered to release COS, which is quickly converted to HS by carbonic anhydrase. To expand our understanding of the chemical underpinnings that enable HSe delivery, we investigated whether selenocarbamates undergo similar chemistry to release carbonyl selenide (COSe). Using both light- and hydrolysis-activated systems, we demonstrate that unlike their lighter thiocarbamate congeners, selenocarbamates release HSe directly with concomitant isocyanate formation rather than by the intermediate release of COSe. This reaction mechanism for direct HSe release is further supported by computational investigations that identify a ΔΔ ∼ 25 kcal mol between the HSe and COSe release pathways in the absence of protic solvent. This work highlights fundamentally new approaches for HSe release from small molecules and advances the understanding of reactivity differences between reactive sulfur and selenium species.
硒化氢(HSe)是一种潜在的生物调节剂、气体递质以及生物有机硒化合物合成中的重要前体。早期用于HSe研究的工具受益于对用于检测或递送HS的类似小分子的现有机理理解。目前一种常见的HS递送方法是使用小分子硫代氨基甲酸盐,其可以被设计成释放COS,COS会被碳酸酐酶迅速转化为HS。为了扩展我们对实现HSe递送的化学基础的理解,我们研究了硒代氨基甲酸盐是否经历类似的化学反应以释放羰基硒(COSe)。使用光激活和水解激活系统,我们证明,与较轻的硫代氨基甲酸盐同系物不同,硒代氨基甲酸盐直接释放HSe并伴随异氰酸酯的形成,而不是通过中间释放COSe。在没有质子溶剂的情况下,计算研究确定HSe和COSe释放途径之间的ΔΔ ∼ 25 kcal mol,这进一步支持了这种直接释放HSe的反应机制。这项工作突出了从小分子中释放HSe的全新方法,并推进了对活性硫和硒物种之间反应性差异的理解。
Chem Sci. 2023-6-20
J Am Chem Soc. 2022-3-9
Chem Sci. 2019-10-11
J Am Chem Soc. 2021-11-24
Molecules. 2024-8-15
ACS Chem Biol. 2019-1-17
Molecules. 2024-8-15
J Am Chem Soc. 2022-3-9
J Am Chem Soc. 2021-11-24
Chem Sci. 2019-10-11
Intensive Care Med Exp. 2019-12-16
Antioxid Redox Signal. 2019-10-29
J Org Chem. 2019-9-18