Suppr超能文献

一种基于计算鬼成像和全变差最小化的光学多重图像认证方法。

An optical multiple-image authentication based on computational ghost imaging and total-variation minimization.

作者信息

Zhou Yaoling, Sun Yueer, Yang Mu, Hou Junzhao, Xiao Zhaolin, Anand Asundi, Sui Liansheng

机构信息

School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China.

Yonyou Network co., Ltd, Beijing, 100085, China.

出版信息

Heliyon. 2023 Jun 29;9(7):e17682. doi: 10.1016/j.heliyon.2023.e17682. eCollection 2023 Jul.

Abstract

An optical multiple-image authentication is suggested using computational ghost imaging and total-variation minimization. Differing from encrypting multiple images into a noise-like ciphertext directly, as described in most conventional authentication methods, the related encoded information is embedded into a cover image to avoid the attention of eavesdroppers. First, multiple images are encoded to form real-valued sequences composed of corresponding bucket values obtained by the aid of computational ghost imaging, and four sub-images are obtained by decomposing the cover image using wavelet transform. Second, measured sequences are embedded into one of the sub-images, and embedding positions are randomly selected using corresponding binary masks. To enhance the security level, a chaotic sequence is produced using logistic map and used to scramble measured intensities. Most importantly, original images with high quality can be directly recovered using total-variation minimization. The validity and robustness of the proposed approach are verified with optical experiments.

摘要

提出了一种利用计算鬼成像和全变差最小化的光学多图像认证方法。与大多数传统认证方法中直接将多幅图像加密成类似噪声的密文不同,相关编码信息被嵌入到一幅掩护图像中,以避免被窃听者注意。首先,对多幅图像进行编码,形成由借助计算鬼成像获得的相应桶值组成的实值序列,并通过小波变换对掩护图像进行分解得到四个子图像。其次,将测量序列嵌入到其中一个子图像中,并使用相应的二进制掩码随机选择嵌入位置。为了提高安全级别,利用逻辑斯谛映射生成一个混沌序列,并用于扰乱测量强度。最重要的是,可以使用全变差最小化直接恢复高质量的原始图像。通过光学实验验证了该方法的有效性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/063c/10336455/c5b23611bf22/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验