Rodrigues Vânia, Deusdado Sérgio
USAL-Universidad de Salamanca, 37008 Salamanca, Spain.
Instituto Politécnico de Bragança, CIMO-Centro de Investigação de Montanha, 5301-855 Bragança, Portugal.
3 Biotech. 2023 Aug;13(8):271. doi: 10.1007/s13205-023-03690-0. Epub 2023 Jul 11.
Plant growth-promoting rhizobacteria (PGPRs) are bacteria that colonize the plant roots. These beneficial bacteria have an influence on plant development through multiple mechanisms, such as nutrient availability, alleviating biotic and abiotic stress, and secrete phytohormones. Therefore, their inoculation constitutes a powerful tool towards sustainable agriculture and crop production. To understand plant-PGPRs interaction we present the classification of PGPR using machine learning and meta-learning classifiers namely Support Vector Machine (SVM), Kernel Logistic Regression (KLR), meta-SVM and meta-KLR to predict the presence of inoculated in tomato root tissues using publicly available transcriptomic data. The original dataset presents 36 significantly differentially expressed genes. As the meta-KLR achieved near-optimal performance considering all the relevant metrics, this meta learner was afterwards used to identify the informative genes (IGs). The outcomes showed 157 IGs, being present all significantly differentially expressed genes previously identified. Among the IGs, 113 were identified as tomato genes, 5 as proteins, 1 as protein and 6 were unidentified. Then, a functional enrichment analysis of the tomato IGs showed 175 biological processes, 22 molecular functions and 20 KEGG pathways involved in tomato interaction. Furthermore, the biological networks study of their orthologous genes identified the co-expression, predicted interaction, shared protein domains and co-localization networks.
The online version contains supplementary material available at 10.1007/s13205-023-03690-0.
植物促生根际细菌(PGPRs)是定殖于植物根部的细菌。这些有益细菌通过多种机制影响植物发育,如养分有效性、缓解生物和非生物胁迫以及分泌植物激素。因此,接种这些细菌是实现可持续农业和作物生产的有力工具。为了解植物与PGPRs的相互作用,我们使用机器学习和元学习分类器,即支持向量机(SVM)、核逻辑回归(KLR)、元SVM和元KLR,对PGPRs进行分类,以利用公开可用的转录组数据预测番茄根组织中接种物的存在。原始数据集呈现了36个显著差异表达的基因。由于考虑所有相关指标时元KLR实现了近乎最优的性能,此后该元学习器被用于识别信息基因(IGs)。结果显示有157个IGs,其中包含先前鉴定出的所有显著差异表达基因。在这些IGs中,113个被鉴定为番茄基因,5个为蛋白质,1个为蛋白质,6个未鉴定。然后,对番茄IGs进行的功能富集分析显示,有175个生物学过程、22个分子功能和20条KEGG途径参与番茄相互作用。此外,对其直系同源基因的生物网络研究确定了共表达、预测的相互作用、共享的蛋白质结构域和共定位网络。
在线版本包含可在10.1007/s13205-023-03690-0获取的补充材料。