Suppr超能文献

番茄乙烯敏感性决定了其与植物促生细菌的相互作用。

Tomato ethylene sensitivity determines interaction with plant growth-promoting bacteria.

作者信息

Ibort Pablo, Molina Sonia, Núñez Rafael, Zamarreño Ángel María, García-Mina José María, Ruiz-Lozano Juan Manuel, Orozco-Mosqueda Maria Del Carmen, Glick Bernard R, Aroca Ricardo

机构信息

Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain.

Scientific Instrumental Service, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain.

出版信息

Ann Bot. 2017 Jul 1;120(1):101-122. doi: 10.1093/aob/mcx052.

Abstract

BACKGROUND AND AIMS

Plant growth-promoting bacteria (PGPB) are soil micro-organisms able to interact with plants and stimulate their growth, positively affecting plant physiology and development. Although ethylene plays a key role in plant growth, little is known about the involvement of ethylene sensitivity in bacterial inoculation effects on plant physiology. Thus, the present study was pursued to establish whether ethylene perception is critical for plant-bacteria interaction and growth induction by two different PGPB strains, and to assess the physiological effects of these strains in juvenile and mature tomato ( Solanum lycopersicum ) plants.

METHODS

An experiment was performed with the ethylene-insensitive tomato never ripe and its isogenic wild-type line in which these two strains were inoculated with either Bacillus megaterium or Enterobacter sp. C7. Plants were grown until juvenile and mature stages, when biomass, stomatal conductance, photosynthesis as well as nutritional, hormonal and metabolic statuses were analysed.

KEY RESULTS

Bacillus megaterium promoted growth only in mature wild type plants. However, Enterobacter C7 PGPB activity affected both wild-type and never ripe plants. Furthermore, PGPB inoculation affected physiological parameters and root metabolite levels in juvenile plants; meanwhile plant nutrition was highly dependent on ethylene sensitivity and was altered at the mature stage. Bacillus megaterium inoculation improved carbon assimilation in wild-type plants. However, insensitivity to ethylene compromised B. megaterium PGPB activity, affecting photosynthetic efficiency, plant nutrition and the root sugar content. Nevertheless, Enterobacter C7 inoculation modified the root amino acid content in addition to stomatal conductance and plant nutrition.

CONCLUSIONS

Insensitivity to ethylene severely impaired B. megaterium interaction with tomato plants, resulting in physiological modifications and loss of PGPB activity. In contrast, Enterobacter C7 inoculation stimulated growth independently of ethylene perception and improved nitrogen assimilation in ethylene-insensitive plants. Thus, ethylene sensitivity is a determinant for B. megaterium , but is not involved in Enterobacter C7 PGPB activity.

摘要

背景与目的

植物促生细菌(PGPB)是一类能够与植物相互作用并刺激其生长的土壤微生物,对植物生理和发育具有积极影响。尽管乙烯在植物生长中起关键作用,但关于乙烯敏感性在细菌接种对植物生理影响中的作用却知之甚少。因此,本研究旨在确定乙烯感知对于两种不同PGPB菌株与植物的相互作用及生长诱导是否至关重要,并评估这些菌株对幼年和成熟番茄(Solanum lycopersicum)植株的生理影响。

方法

使用乙烯不敏感的番茄品种“永不成熟”及其同基因野生型品系进行实验,用巨大芽孢杆菌或肠杆菌属C7菌株对这两个品系进行接种。植株生长至幼年和成熟阶段时,分析其生物量、气孔导度、光合作用以及营养、激素和代谢状态。

主要结果

巨大芽孢杆菌仅促进成熟野生型植株的生长。然而,肠杆菌C7的PGPB活性对野生型和“永不成熟”植株均有影响。此外,PGPB接种影响了幼年植株的生理参数和根系代谢物水平;同时,植物营养高度依赖乙烯敏感性,且在成熟阶段发生改变。巨大芽孢杆菌接种提高了野生型植株的碳同化。然而,对乙烯不敏感会损害巨大芽孢杆菌的PGPB活性,影响光合效率、植物营养和根系糖分含量。尽管如此,肠杆菌C7接种除了影响气孔导度和植物营养外,还改变了根系氨基酸含量。

结论

对乙烯不敏感严重损害了巨大芽孢杆菌与番茄植株的相互作用,导致生理改变和PGPB活性丧失。相比之下,肠杆菌C7接种可独立于乙烯感知刺激生长,并改善乙烯不敏感植株的氮同化。因此,乙烯敏感性是巨大芽孢杆菌作用的决定因素,但不参与肠杆菌C7的PGPB活性。

相似文献

1
Tomato ethylene sensitivity determines interaction with plant growth-promoting bacteria.
Ann Bot. 2017 Jul 1;120(1):101-122. doi: 10.1093/aob/mcx052.
3
Proteomic analysis reveals that tomato interaction with plant growth promoting bacteria is highly determined by ethylene perception.
J Plant Physiol. 2018 Jan;220:43-59. doi: 10.1016/j.jplph.2017.10.008. Epub 2017 Nov 10.
4
Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants.
BMC Plant Biol. 2014 Jan 25;14:36. doi: 10.1186/1471-2229-14-36.
10
A non-K-solubilizing PGPB (Bacillus megaterium) increased K deprivation tolerance in Oryza sativa seedlings by up-regulating root K transporters.
Plant Physiol Biochem. 2023 Mar;196:774-782. doi: 10.1016/j.plaphy.2023.02.027. Epub 2023 Feb 17.

引用本文的文献

2
'A plant's major strength in rhizosphere': the plant growth promoting rhizobacteria.
Arch Microbiol. 2023 Apr 4;205(5):165. doi: 10.1007/s00203-023-03502-2.
4
The "beauty in the beast"-the multiple uses of Priestia megaterium in biotechnology.
Appl Microbiol Biotechnol. 2021 Aug;105(14-15):5719-5737. doi: 10.1007/s00253-021-11424-6. Epub 2021 Jul 15.
5
Phytohormone Mediation of Interactions Between Plants and Non-Symbiotic Growth Promoting Bacteria Under Edaphic Stresses.
Front Plant Sci. 2019 Oct 29;10:1368. doi: 10.3389/fpls.2019.01368. eCollection 2019.

本文引用的文献

1
Augmenting Sulfur Metabolism and Herbivore Defense in Arabidopsis by Bacterial Volatile Signaling.
Front Plant Sci. 2016 Apr 8;7:458. doi: 10.3389/fpls.2016.00458. eCollection 2016.
4
Plant growth-promoting bacterial endophytes.
Microbiol Res. 2016 Feb;183:92-9. doi: 10.1016/j.micres.2015.11.008. Epub 2015 Nov 25.
5
Links Between Ethylene and Sulfur Nutrition-A Regulatory Interplay or Just Metabolite Association?
Front Plant Sci. 2015 Dec 1;6:1053. doi: 10.3389/fpls.2015.01053. eCollection 2015.
7
Ethylene and Hormonal Cross Talk in Vegetative Growth and Development.
Plant Physiol. 2015 Sep;169(1):61-72. doi: 10.1104/pp.15.00724. Epub 2015 Jul 31.
8
Metabolic transition in mycorrhizal tomato roots.
Front Microbiol. 2015 Jun 23;6:598. doi: 10.3389/fmicb.2015.00598. eCollection 2015.
9
What the transcriptome does not tell - proteomics and metabolomics are closer to the plants' patho-phenotype.
Curr Opin Plant Biol. 2015 Aug;26:26-31. doi: 10.1016/j.pbi.2015.05.023. Epub 2015 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验