Yang Bining, Liu Yuxiang, Zhu Ji, Lu Ningning, Dai Jianrong, Men Kuo
National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Med Phys. 2024 Feb;51(2):922-932. doi: 10.1002/mp.16608. Epub 2023 Jul 14.
It is necessary to contour regions of interest (ROIs) for online magnetic resonance imaging (MRI)-guided adaptive radiotherapy (MRIgART). These updated contours are used for online replanning to obtain maximum dosimetric benefits. Contouring can be accomplished using deformable image registration (DIR) and deep learning (DL)-based autosegmentation methods. However, these methods may require considerable manual editing and thus prolong treatment time.
The present study aimed to improve autosegmentation performance by integrating patients' pretreatment information in a DL-based segmentation algorithm. It is expected to improve the efficiency of current MRIgART process.
Forty patients with prostate cancer were enrolled retrospectively. The online adaptive MR images, patient-specific planning computed tomography (CT), and contours in CT were used for segmentation. The deformable registration of planning CT and MR images was performed first to obtain a deformable CT and corresponding contours. A novel DL network, which can integrate such patient-specific information (deformable CT and corresponding contours) into the segmentation task of MR images was designed. We performed a four-fold cross-validation for the DL models. The proposed method was compared with DIR and DL methods on segmentation of prostate cancer. The ROIs included the clinical target volume (CTV), bladder, rectum, left femur head, and right femur head. Dosimetric parameters of automatically generated ROIs were evaluated using a clinical treatment planning system.
The proposed method enhanced the segmentation accuracy of conventional procedures. Its mean value of the dice similarity coefficient (93.5%) over the five ROIs was higher than both DIR (87.5%) and DL (87.2%). The number of patients (n = 40) that required major editing using DIR, DL, and our method were 12, 18, and 7 (CTV); 17, 4, and 1 (bladder); 8, 11, and 5 (rectum); 2, 4, and 1 (left femur head); and 3, 7, and 1 (right femur head), respectively. The Spearman rank correlation coefficient of dosimetry parameters between the proposed method and ground truth was 0.972 ± 0.040, higher than that of DIR (0.897 ± 0.098) and DL (0.871 ± 0.134).
This study proposed a novel method that integrates patient-specific pretreatment information into DL-based segmentation algorithm. It outperformed baseline methods, thereby improving the efficiency and segmentation accuracy in adaptive radiotherapy.
在在线磁共振成像(MRI)引导的自适应放射治疗(MRIgART)中,对感兴趣区域(ROI)进行轮廓勾画很有必要。这些更新后的轮廓用于在线重新规划,以获得最大的剂量学益处。轮廓勾画可以使用可变形图像配准(DIR)和基于深度学习(DL)的自动分割方法来完成。然而,这些方法可能需要大量的人工编辑,从而延长治疗时间。
本研究旨在通过将患者的预处理信息整合到基于DL的分割算法中来提高自动分割性能。期望提高当前MRIgART流程的效率。
回顾性纳入40例前列腺癌患者。使用在线自适应MR图像、患者特异性计划计算机断层扫描(CT)以及CT中的轮廓进行分割。首先对计划CT和MR图像进行可变形配准,以获得可变形CT和相应的轮廓。设计了一种新颖的DL网络,该网络可以将此类患者特异性信息(可变形CT和相应的轮廓)整合到MR图像的分割任务中。我们对DL模型进行了四折交叉验证。将所提出的方法与DIR和DL方法在前列腺癌分割方面进行比较。ROI包括临床靶体积(CTV)、膀胱、直肠、左股骨头和右股骨头。使用临床治疗计划系统评估自动生成的ROI的剂量学参数。
所提出的方法提高了传统程序的分割精度。其在五个ROI上的骰子相似系数平均值(93.5%)高于DIR(87.5%)和DL(87.2%)。使用DIR、DL和我们的方法需要进行重大编辑的患者数量(n = 40)分别为:CTV,12、18和7;膀胱,17、4和1;直肠,8、11和5;左股骨头,2、4和1;右股骨头,3、7和1。所提出的方法与真实情况之间剂量学参数的Spearman等级相关系数为0.972±0.040,高于DIR(0.897±0.098)和DL(0.871±0.134)。
本研究提出了一种将患者特异性预处理信息整合到基于DL的分割算法中的新方法。它优于基线方法,从而提高了自适应放射治疗的效率和分割精度。