Medical Artificial Intelligence and Automation Laboratory and Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
Phys Med Biol. 2023 Feb 10;68(4). doi: 10.1088/1361-6560/acb4d7.
Cone-beam CT (CBCT)-based online adaptive radiotherapy calls for accurate auto-segmentation to reduce the time cost for physicians. However, deep learning (DL)-based direct segmentation of CBCT images is a challenging task, mainly due to the poor image quality and lack of well-labelled large training datasets. Deformable image registration (DIR) is often used to propagate the manual contours on the planning CT (pCT) of the same patient to CBCT. In this work, we undertake solving the problems mentioned above with the assistance of DIR. Our method consists of three main components. First, we use deformed pCT contours derived from multiple DIR methods between pCT and CBCT as pseudo labels for initial training of the DL-based direct segmentation model. Second, we use deformed pCT contours from another DIR algorithm as influencer volumes to define the region of interest for DL-based direct segmentation. Third, the initially trained DL model is further fine-tuned using a smaller set of true labels. Nine patients are used for model evaluation. We found that DL-based direct segmentation on CBCT without influencer volumes has much poorer performance compared to DIR-based segmentation. However, adding deformed pCT contours as influencer volumes in the direct segmentation network dramatically improves segmentation performance, reaching the accuracy level of DIR-based segmentation. The DL model with influencer volumes can be further improved through fine-tuning using a smaller set of true labels, achieving mean Dice similarity coefficient of 0.86, Hausdorff distance at the 95th percentile of 2.34 mm, and average surface distance of 0.56 mm. A DL-based direct CBCT segmentation model can be improved to outperform DIR-based segmentation models by using deformed pCT contours as pseudo labels and influencer volumes for initial training, and by using a smaller set of true labels for model fine tuning.
基于锥形束 CT(CBCT)的在线自适应放疗需要准确的自动分割,以减少医生的时间成本。然而,基于深度学习(DL)的 CBCT 图像直接分割是一项具有挑战性的任务,主要是由于图像质量差和缺乏标注良好的大型训练数据集。变形图像配准(DIR)通常用于将同一患者的计划 CT(pCT)上的手动轮廓传播到 CBCT。在这项工作中,我们借助 DIR 解决了上述问题。我们的方法包括三个主要部分。首先,我们使用源自 pCT 和 CBCT 之间的多个 DIR 方法的变形 pCT 轮廓作为基于 DL 的直接分割模型的初始训练的伪标签。其次,我们使用另一个 DIR 算法的变形 pCT 轮廓作为影响体积,为基于 DL 的直接分割定义感兴趣区域。第三,使用更小的真实标签集进一步微调初始训练的 DL 模型。使用 9 名患者进行模型评估。我们发现,没有影响体的基于 DL 的直接 CBCT 分割与基于 DIR 的分割相比性能要差得多。然而,在直接分割网络中添加变形 pCT 轮廓作为影响体可以显著提高分割性能,达到基于 DIR 的分割的准确性水平。使用更小的真实标签集进行微调后,具有影响体的 DL 模型可以进一步改进,平均骰子相似系数达到 0.86,第 95 百分位数的 Hausdorff 距离为 2.34 毫米,平均表面距离为 0.56 毫米。通过使用变形的 pCT 轮廓作为伪标签和初始训练的影响体,以及使用更小的真实标签集进行模型微调,可以改进基于 DL 的直接 CBCT 分割模型,使其性能优于基于 DIR 的分割模型。