Advincula Abigail A, Atassi Amalie, Gregory Shawn A, Thorley Karl J, Ponder James F, Freychet Guillaume, Jones Austin L, Su Gregory M, Yee Shannon K, Reynolds John R
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States.
ACS Appl Mater Interfaces. 2023 Jul 26;15(29):35227-35238. doi: 10.1021/acsami.3c00053. Epub 2023 Jul 14.
This study investigates the solid-state charge transport properties of the oxidized forms of dioxythiophene-based alternating copolymers consisting of an oligoether-functionalized 3,4-propylenedioxythiophene (ProDOT) copolymerized with different aryl groups, dimethyl ProDOT (DMP), 3,4-ethylenedioxythiophene (EDOT), and 3,4-phenylenedioxythiophene (PheDOT), respectively, to yield copolymers P(OE3)-D, P(OE3)-E, and P(OE3)-Ph. At a dopant concentration of 5 mM FeTos, the electrical conductivities of these copolymers vary significantly (ranging between 9 and 195 S cm) with the EDOT copolymer, P(OE3)-E, achieving the highest electrical conductivity. UV-vis-NIR and X-ray spectroscopies show differences in both susceptibility to oxidative doping and extent of oxidation for the P(OE3) series, with P(OE3)-E being the most doped. Wide-angle X-ray scattering measurements indicate that P(OE3)-E generally demonstrates the lowest paracrystallinity values in the series, as well as relatively small π-π stacking distances. The significant (i.e., order of magnitude) increase in electrical conductivity of doped P(OE3)-E films versus doped P(OE3)-D or P(OE3)-Ph films can therefore be attributed to P(OE3)-E exhibiting both the highest carrier ratios in the P(OE3) series, along with good π-π overlap and local ordering (low paracrystallinity values). Furthermore, these trends in the extent of doping and paracrystallinity are consistent with the reduced Fermi energy level and transport function prefactor parameters calculated using the semilocalized transport (SLoT) model. Observed differences in carrier ratios at the transport edge () and reduced Fermi energies [η()] suggest a broader electronic band (better overlap and more delocalization) for the EDOT-incorporating P(OE3)-E polymer relative to P(OE3)-D and P(OE3)-Ph. Ultimately, we rationalize improvements in electrical conductivity due to microstructural and doping enhancements caused by EDOT incorporation, a structure-property relationship worth considering in the future design of highly electrically conductive systems.
本研究考察了由低聚醚官能化的3,4 - 亚丙基二氧噻吩(ProDOT)与不同芳基分别共聚得到的基于二氧噻吩的交替共聚物的氧化形式的固态电荷传输性质,这些芳基分别为二甲基ProDOT(DMP)、3,4 - 亚乙基二氧噻吩(EDOT)和3,4 - 亚苯基二氧噻吩(PheDOT),从而得到共聚物P(OE3)-D、P(OE3)-E和P(OE3)-Ph。在掺杂剂浓度为5 mM FeTos时,这些共聚物的电导率有显著差异(范围在9至195 S/cm之间),其中EDOT共聚物P(OE3)-E具有最高的电导率。紫外 - 可见 - 近红外光谱和X射线光谱显示,P(OE3)系列在氧化掺杂敏感性和氧化程度方面存在差异,P(OE3)-E的掺杂程度最高。广角X射线散射测量表明,P(OE3)-E在该系列中通常表现出最低的准结晶度值以及相对较小的π - π堆积距离。因此,掺杂的P(OE3)-E薄膜相对于掺杂的P(OE3)-D或P(OE3)-Ph薄膜电导率显著(即数量级)增加,可归因于P(OE3)-E在P(OE3)系列中具有最高的载流子比率,同时具有良好的π - π重叠和局部有序性(低准结晶度值)。此外,掺杂程度和准结晶度的这些趋势与使用半局域化传输(SLoT)模型计算的降低的费米能级和传输函数前置因子参数一致。在传输边缘()处观察到的载流子比率差异以及降低的费米能[η()]表明,相对于P(OE3)-D和P(OE3)-Ph,含EDOT的P(OE-3)-E聚合物具有更宽的电子能带(更好的重叠和更多的离域)。最终,我们解释了由于引入EDOT导致的微观结构和掺杂增强而使电导率提高的原因,这是一种在未来高导电系统设计中值得考虑的结构 - 性能关系。