Suppr超能文献

导电聚合物的高效离子交换掺杂

High-Efficiency Ion-Exchange Doping of Conducting Polymers.

作者信息

Jacobs Ian E, Lin Yue, Huang Yuxuan, Ren Xinglong, Simatos Dimitrios, Chen Chen, Tjhe Dion, Statz Martin, Lai Lianglun, Finn Peter A, Neal William G, D'Avino Gabriele, Lemaur Vincent, Fratini Simone, Beljonne David, Strzalka Joseph, Nielsen Christian B, Barlow Stephen, Marder Seth R, McCulloch Iain, Sirringhaus Henning

机构信息

Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.

出版信息

Adv Mater. 2022 Jun;34(22):e2102988. doi: 10.1002/adma.202102988. Epub 2021 Aug 21.

Abstract

Molecular doping-the use of redox-active small molecules as dopants for organic semiconductors-has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox-active character of these materials. A recent breakthrough was a doping technique based on ion-exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene) (PBTTT) doped with FeCl and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl , are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential.

摘要

分子掺杂——使用具有氧化还原活性的小分子作为有机半导体的掺杂剂——由于在传感、生物电子学和热电学等新兴应用中的驱动,在研究兴趣方面出现了激增。然而,分子掺杂本身存在几个直接源于这些材料氧化还原活性特征的问题。最近的一项突破是基于离子交换的掺杂技术,该技术将掺杂过程的氧化还原和电荷补偿步骤分开。在此,研究了在一个模型体系中,用FeCl和离子液体掺杂的聚(2,5-双(3-烷基噻吩-2-基)噻吩并(3,2-b)噻吩)(PBTTT)中离子交换掺杂的平衡和动力学,其电导率超过1000 S/cm,离子交换效率高于99%。证明了几个实现如此高性能的因素,包括选择乙腈作为掺杂溶剂,这在很大程度上消除了电解质缔合效应,并显著提高了FeCl的掺杂强度。在这种高离子交换效率 regime 中,阐明了电化学掺杂和离子交换之间的简单联系,并且表明高度掺杂的PBTTT的性能和稳定性最终受到高氧化还原电位下固有稳定性差的限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验