Suppr超能文献

力依赖性的焦点黏附组装和拆卸:一项计算研究。

Force-dependent focal adhesion assembly and disassembly: A computational study.

机构信息

Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands.

School of Biosciences, University of Kent, Canterbury, United Kingdom.

出版信息

PLoS Comput Biol. 2023 Oct 6;19(10):e1011500. doi: 10.1371/journal.pcbi.1011500. eCollection 2023 Oct.

Abstract

Cells interact with the extracellular matrix (ECM) via cell-ECM adhesions. These physical interactions are transduced into biochemical signals inside the cell which influence cell behaviour. Although cell-ECM interactions have been studied extensively, it is not completely understood how immature (nascent) adhesions develop into mature (focal) adhesions and how mechanical forces influence this process. Given the small size, dynamic nature and short lifetimes of nascent adhesions, studying them using conventional microscopic and experimental techniques is challenging. Computational modelling provides a valuable resource for simulating and exploring various "what if?" scenarios in silico and identifying key molecular components and mechanisms for further investigation. Here, we present a simplified mechano-chemical model based on ordinary differential equations with three major proteins involved in adhesions: integrins, talin and vinculin. Additionally, we incorporate a hypothetical signal molecule that influences adhesion (dis)assembly rates. We find that assembly and disassembly rates need to vary dynamically to limit maturation of nascent adhesions. The model predicts biphasic variation of actin retrograde velocity and maturation fraction with substrate stiffness, with maturation fractions between 18-35%, optimal stiffness of ∼1 pN/nm, and a mechanosensitive range of 1-100 pN/nm, all corresponding to key experimental findings. Sensitivity analyses show robustness of outcomes to small changes in parameter values, allowing model tuning to reflect specific cell types and signaling cascades. The model proposes that signal-dependent disassembly rate variations play an underappreciated role in maturation fraction regulation, which should be investigated further. We also provide predictions on the changes in traction force generation under increased/decreased vinculin concentrations, complementing previous vinculin overexpression/knockout experiments in different cell types. In summary, this work proposes a model framework to robustly simulate the mechanochemical processes underlying adhesion maturation and maintenance, thereby enhancing our fundamental knowledge of cell-ECM interactions.

摘要

细胞通过细胞-细胞外基质(ECM)黏附与细胞外基质相互作用。这些物理相互作用被转导为细胞内的生化信号,影响细胞行为。尽管细胞-ECM 相互作用已经得到了广泛的研究,但人们并不完全了解未成熟(新生)黏附是如何发展为成熟(焦点)黏附的,以及机械力如何影响这个过程。鉴于新生黏附的体积小、动态性和短寿命,使用传统的显微镜和实验技术研究它们具有挑战性。计算建模为模拟和探索各种“假设”情景提供了有价值的资源,并可以在计算机中识别关键的分子成分和机制,以便进一步研究。在这里,我们提出了一个基于常微分方程的简化力学-化学模型,其中涉及到三种主要的黏附蛋白:整合素、talin 和 vinculin。此外,我们还纳入了一个假设的信号分子,它影响黏附(解)组装的速率。我们发现,组装和拆卸的速率需要动态变化,以限制新生黏附的成熟。该模型预测,随着基质刚度的增加,肌动蛋白逆行速度和成熟分数呈双相变化,成熟分数在 18-35%之间,最佳刚度约为 1 pN/nm,机械敏感范围为 1-100 pN/nm,所有这些都与关键的实验结果相对应。敏感性分析表明,模型结果对参数值的微小变化具有稳健性,允许模型调整以反映特定的细胞类型和信号级联。该模型提出,信号依赖性的解组装速率变化在成熟分数调节中起着被低估的作用,这应该进一步研究。我们还对增加/减少 vinculin 浓度下牵引力生成的变化进行了预测,补充了以前在不同细胞类型中进行的 vinculin 过表达/敲除实验。总之,这项工作提出了一个模型框架,可以稳健地模拟黏附成熟和维持的力学-化学过程,从而增强我们对细胞-ECM 相互作用的基本认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0d3/10584152/dd3fb3efdf03/pcbi.1011500.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验