Suppr超能文献

通过时效处理控制纳米 Cu 析出:一种提高 Fe-20Mn-3Cu 合金生物降解性、力学性能、抗菌性能和生物相容性的方法。

Controlled nano Cu precipitation through age treatment: A method to enhance the biodegradation, mechanical, antimicrobial properties and biocompatibility of Fe-20Mn-3Cu alloys.

机构信息

Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.

Department of Veterinary Surgery & Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India.

出版信息

Acta Biomater. 2023 Sep 15;168:650-669. doi: 10.1016/j.actbio.2023.07.004. Epub 2023 Jul 13.

Abstract

Iron-manganese (Fe-Mn) based degradable biomaterials have been proven as a suitable substitute to permanent internal fracture-fixation devices. However, lower degradation and bacterial infection are still major concerns. To overcome these limitations, in this work, we have incorporated copper (Cu) in Fe-Mn system. The objective is to produce Cu nano-precipitates and refined microstructure through suitable combination of cold-rolling and age-treatment, so that degradation is improved eventually. High resolution transmission electron microscope (TEM) and scanning transmission electron microscope (STEM) confirmed the Cu rich composition of the nano-precipitates. Number of precipitates increased as aging time increased. Three-dimensional visualization of Fe, Mn and Cu atomic distributions using atom probe tomography (APT), indicated that Cu precipitates were in 15-50 nm range. Large number of nano-precipitates along with lower dislocation density led to highest strength (1078 MPa) and ductility (37 %) for the 6 h age-treated sample. On the other hand, nano-precipitates and refined microstructure resulted highest degradation for the 12 h of age treated sample (0.091 mmpy). When E.Coli bacteria was cultured with the sample extract, significantly higher antibacterial efficacy was observed for the sample having higher nano-precipitates. Higher degradation rate did not cause cyto-toxicity, rather promoted statistically higher cell proliferation (1.5 times within 24 h) in in vitro cell-material interaction studies. In vivo biocompatibility of the alloy containing large nano-precipitates was confirmed from higher new bone regeneration (60%) in rabbit femur model. Overall study suggested that the optimization of the thermo-mechanical processes can effectively tailor the Fe-Mn-Cu alloys for successful internal fracture fixation. STATEMENT OF SIGNIFICANCE: In the present work, we have reported a noble thermo-mechanical approach to simultaneously achieve Cu nano-precipitates and grain refinement in Fe-20Mn-3Cu alloy.

摘要

铁锰(Fe-Mn)基可降解生物材料已被证明是永久性内部骨折固定装置的合适替代品。然而,降解速度较慢和细菌感染仍然是主要关注点。为了克服这些限制,在这项工作中,我们在 Fe-Mn 系统中加入了铜(Cu)。目的是通过冷轧和时效处理的适当组合,生成 Cu 纳米沉淀物并细化微观结构,从而最终提高降解性能。高分辨率透射电子显微镜(TEM)和扫描透射电子显微镜(STEM)证实了纳米沉淀物的富 Cu 成分。随着时效时间的增加,沉淀物的数量增加。使用原子探针断层扫描(APT)对 Fe、Mn 和 Cu 原子分布进行三维可视化,表明 Cu 沉淀物的尺寸在 15-50nm 范围内。大量纳米沉淀物和较低的位错密度使 6h 时效处理样品具有最高的强度(1078MPa)和延展性(37%)。另一方面,纳米沉淀物和细化的微观结构使 12h 时效处理样品的降解率最高(0.091mmpy)。当将大肠杆菌细菌与样品提取物一起培养时,具有更高纳米沉淀物的样品表现出更高的抗菌效果。较高的降解速率并没有导致细胞毒性,而是在体外细胞-材料相互作用研究中促进了统计上更高的细胞增殖(24h 内增加了 1.5 倍)。在含有大量纳米沉淀物的合金的体内生物相容性研究中,在兔股骨模型中证实了更高的新骨再生(60%)。总的来说,这项研究表明,优化热机械过程可以有效地调整 Fe-Mn-Cu 合金,以成功地进行内部骨折固定。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验