Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Nat Commun. 2023 Jul 14;14(1):4199. doi: 10.1038/s41467-023-39940-1.
The search for new elementary particles is one of the most basic pursuits in physics, spanning from subatomic physics to quantum materials. Magnons are the ubiquitous elementary quasiparticle to describe the excitations of fully-ordered magnetic systems. But other possibilities exist, including fractional and multipolar excitations. Here, we demonstrate that strong quantum interactions exist between three flavors of elementary quasiparticles in the uniaxial spin-one magnet FeI. Using neutron scattering in an applied magnetic field, we observe spontaneous decay between conventional and heavy magnons and the recombination of these quasiparticles into a super-heavy bound-state. Akin to other contemporary problems in quantum materials, the microscopic origin for unusual physics in FeI is the quasi-flat nature of excitation bands and the presence of Kitaev anisotropic magnetic exchange interactions.
寻找新的基本粒子是物理学中最基本的追求之一,涵盖了从亚原子物理到量子材料的范围。磁振子是描述完全有序磁系统激发的无处不在的基本准粒子。但也存在其他可能性,包括分数和多极激发。在这里,我们证明了在单轴自旋 1 磁体 FeI 中,三种基本准粒子之间存在强烈的量子相互作用。通过在施加磁场中的中子散射,我们观察到常规和重磁振子之间的自发衰减,以及这些准粒子复合成超重束缚态。与量子材料中其他当代问题类似,FeI 中异常物理的微观起源是激发能带的准平坦性质和 Kitaev 各向异性磁交换相互作用的存在。