Suppr超能文献

揭示了钙催化纤维素和木质素生物炭石墨化的机理。

The mechanisms of calcium-catalyzed graphenization of cellulose and lignin biochars uncovered.

机构信息

IMT Mines Albi, CNRS, Centre RAPSODEE, Université de Toulouse, Campus Jarlard, Route de Teillet, .81013, Albi Cedex 09, France.

Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Japan.

出版信息

Sci Rep. 2023 Jul 14;13(1):11390. doi: 10.1038/s41598-023-38433-x.

Abstract

A recent study has shown that highly crystalline graphene-based materials can be obtained from poorly organized carbon precursors using calcium as a non-conventional catalyst. XRD and TEM analyses of calcium-impregnated cellulose and lignin biochars showed the formation of well-ordered graphenic structures (L > 7 nm, d < 0.345 nm) above 1200 °C, far below the standard graphenization temperatures (T > 2000 °C). Herein, we propose new insights on the mechanism controlling the formation of highly graphenic biochars using Ca as a catalyst. We postulate that the calcium-catalyzed graphenization occurs through the formation of a metastable calcium carbide by reaction between CaO particles and amorphous carbon between 1000 and 1200 °C. CaC decomposes into calcium vapor and a graphenic shell covering the CaC particles as confirmed by TEM analysis. The thickness and planarity of the graphenic shell increase with the CaC initial particle size (between 20 and 200 nm), and its growth is controlled by the diffusion of the calcium vapor through the graphene layer. A much effective graphenization was obtained for the lignin biochars compared to cellulose, with L > 10 nm and d < 0.340 nm, attributed to the insertion of sulfur in the graphenic shells, which favors their ruptures and the decomposition of CaC into graphene. We believe that these findings would enable the reduction of costs and environmental impact of graphene-based materials synthesis using cheap and abundant renewable feedstocks and catalysts as well.

摘要

最近的一项研究表明,使用钙作为非常规催化剂,可以从组织较差的碳前体中获得高结晶性石墨烯基材料。对钙浸渍纤维素和木质素生物炭的 XRD 和 TEM 分析表明,在 1200°C 以上形成了有序的石墨结构(L>7nm,d<0.345nm),远低于标准石墨化温度(T>2000°C)。在此,我们提出了使用钙作为催化剂控制高度石墨化生物炭形成的新机制。我们假设钙催化的石墨化是通过在 1000-1200°C 之间 CaO 颗粒和无定形碳之间的反应形成亚稳态碳化钙来实现的。CaC 分解为钙蒸气和覆盖 CaC 颗粒的石墨层,这一点通过 TEM 分析得到了证实。石墨层的厚度和平面度随 CaC 初始粒径(20-200nm 之间)的增加而增加,其生长受钙蒸气通过石墨烯层的扩散控制。与纤维素相比,木质素生物炭的石墨化效果要好得多,得到的 L>10nm,d<0.340nm,这归因于硫插入石墨层中,有利于其破裂和 CaC 分解为石墨烯。我们相信,这些发现将使使用廉价且丰富的可再生原料和催化剂来合成基于石墨烯的材料的成本和环境影响降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d62/10349037/ea0175ad3e96/41598_2023_38433_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验