Suppr超能文献

利用聚光太阳能从木质素合成石墨化生物碳。

Synthesis of graphitic biocarbons from lignin fostered by concentrated solar energy.

作者信息

Rigollet Salomé, Béguerie Théotime, Weiss-Hortala Elsa, Flamant Gilles, Nzihou Ange

机构信息

Mines Albi, CNRS UMR 5302, Centre RAPSODEE, Université de Toulouse, Albi, France.

Processes, Materials and Solar Energy Laboratory, PROMES-CNRS, Font-Romeu-Odeillo-Via, France.

出版信息

Sci Rep. 2025 Feb 21;15(1):6418. doi: 10.1038/s41598-025-91204-8.

Abstract

The approach aiming at replacing fossil-based carbons by graphitic biocarbon has gained momentum in applications from environmental remediation to battery electrodes and supercapacitors, reducing their environmental impact. To address biocarbon high production temperature and energy consumption, this work uses lignin, a renewable feedstock, and concentrated solar as a sustainable energy source. New insights into lignin's graphitization mechanism using solar energy are provided. Graphene layers stacking appears as early as 1000 °C in solar carbonization. The structuration and reduction of amorphous carbon was further highlighted at 1400 °C and 1800 °C. At 2000 °C, high graphitic (L ≈ 9.1 nm, d = 0.3386 nm, 110 stacked layers) and turbostratic (d = 0.3593 nm, 5.5 stacked layers) phases are obtained, showing the structural heterogeneity of solar biocarbon. Contrariwise, conventional biocarbon from electrical heating was homogeneous with limited carbonization at 1800 °C (L ≈ 3.8 nm, d = 0.3600 nm, 4.4 stacked layers). Textural analysis of solar biocarbons showed aligned graphene layers whereas only random texture was observed on conventional samples. This work established that solar carbonization triggers and enhances graphene layers stacking and growth at lower temperatures whereas conventional carbonization allows the progressive apparition of short graphene layers before stacking and growth.

摘要

旨在用石墨化生物碳取代化石基碳的方法在从环境修复到电池电极和超级电容器等应用中获得了发展势头,减少了它们对环境的影响。为了解决生物碳生产温度高和能源消耗大的问题,这项工作使用木质素(一种可再生原料)和聚光太阳能作为可持续能源。提供了关于利用太阳能使木质素石墨化机制的新见解。在太阳能碳化过程中,早在1000°C就出现了石墨烯层的堆叠。在1400°C和1800°C时,非晶碳的结构化和还原得到了进一步突出。在2000°C时,获得了高石墨化(L≈9.1nm,d = 0.3386nm,110个堆叠层)和乱层石墨(d = 0.3593nm,5.5个堆叠层)相,显示了太阳能生物碳的结构异质性。相反,来自电加热的传统生物碳在1800°C时是均匀的,碳化程度有限(L≈3.8nm,d = 0.3600nm,4.4个堆叠层)。太阳能生物碳的织构分析表明石墨烯层排列整齐,而在传统样品上只观察到随机织构。这项工作表明,太阳能碳化在较低温度下触发并增强了石墨烯层的堆叠和生长,而传统碳化则允许在堆叠和生长之前逐渐出现短的石墨烯层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4920/11845578/749de5710f27/41598_2025_91204_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验