Suppr超能文献

用于 correlative light and electron microscopy 的遗传标签的特征。 (注:“correlative light and electron microscopy”可能是指相关光电子显微镜技术,此处由于原文未明确其准确中文术语,所以保留英文,具体可根据专业领域实际情况调整)

Characteristics of genetic tags for correlative light and electron microscopy.

作者信息

Beatty Kimberly E, López Claudia S

机构信息

Department of Chemical Physiology and Biochemistry Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.

Department of Biomedical Engineering Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.

出版信息

Curr Opin Chem Biol. 2023 Oct;76:102369. doi: 10.1016/j.cbpa.2023.102369. Epub 2023 Jul 13.

Abstract

Fluorescence microscopy is indispensable in live cell studies of fluorescently-labeled proteins, but has limited resolution and context. Electron microscopy offers high-resolution imaging of cellular ultrastructure, including membranes, organelles, and other nanoscale features. However, identifying proteins by EM remains a substantial challenge. There is potential to combine the strengths of both FM and EM through correlative light and EM (CLEM), and bridging the two modalities enables new discoveries and biological insights. CLEM enables cellular proteins to be observed dynamically, across size scales, and in relationship to sub-cellular structures. A central limitation to using CLEM is the scarcity of methods for labeling proteins with CLEM reporters. This review will describe the characteristics of genetic tags for CLEM that are available today, including fixation-resistant fluorescent proteins, 3,3'-diaminobenzidine (DAB)-based tags, metal-chelating tags, DNA origami tags, and VIP tags.

摘要

荧光显微镜在对荧光标记蛋白进行活细胞研究中不可或缺,但分辨率和背景信息有限。电子显微镜可对细胞超微结构进行高分辨率成像,包括细胞膜、细胞器及其他纳米级特征。然而,通过电子显微镜识别蛋白质仍然是一项重大挑战。通过关联光镜和电子显微镜(CLEM)有可能结合荧光显微镜和电子显微镜的优势,跨越这两种模式能够带来新的发现和生物学见解。CLEM能够动态观察细胞蛋白质,跨越不同大小尺度,并了解其与亚细胞结构的关系。使用CLEM的一个主要限制是缺乏用CLEM报告基因标记蛋白质的方法。本综述将描述目前可用于CLEM的基因标签的特性,包括抗固定荧光蛋白、基于3,3'-二氨基联苯胺(DAB)的标签、金属螯合标签、DNA折纸标签和VIP标签。

相似文献

1
Characteristics of genetic tags for correlative light and electron microscopy.
Curr Opin Chem Biol. 2023 Oct;76:102369. doi: 10.1016/j.cbpa.2023.102369. Epub 2023 Jul 13.
2
Imaging VIPER-labeled Cellular Proteins by Correlative Light and Electron Microscopy.
Bio Protoc. 2019 Nov 5;9(21):e3414. doi: 10.21769/BioProtoc.3414.
3
VIPER is a genetically encoded peptide tag for fluorescence and electron microscopy.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):12961-12966. doi: 10.1073/pnas.1808626115. Epub 2018 Dec 5.
5
A workflow for 3D-CLEM investigating liver tissue.
J Microsc. 2021 Mar;281(3):231-242. doi: 10.1111/jmi.12967. Epub 2020 Oct 27.
6
Live CLEM imaging to analyze nuclear structures at high resolution.
Methods Mol Biol. 2015;1262:89-103. doi: 10.1007/978-1-4939-2253-6_6.
7
3D HDO-CLEM: cellular compartment analysis by correlative light-electron microscopy on cryosection.
Methods Cell Biol. 2012;111:95-115. doi: 10.1016/B978-0-12-416026-2.00006-6.
8
Rapid in-EPON CLEM: Combining fast and efficient labeling of self-labeling enzyme tags with EM-resistant Janelia Fluor dyes and StayGold.
Heliyon. 2024 Mar 18;10(7):e28055. doi: 10.1016/j.heliyon.2024.e28055. eCollection 2024 Apr 15.
9
High data output method for 3-D correlative light-electron microscopy using ultrathin cryosections.
Methods Mol Biol. 2013;950:417-37. doi: 10.1007/978-1-62703-137-0_23.
10
Live correlative light-electron microscopy to observe molecular dynamics in high resolution.
Microscopy (Oxf). 2016 Aug;65(4):296-308. doi: 10.1093/jmicro/dfw024. Epub 2016 Jul 6.

引用本文的文献

1
Recent advances in correlative cryo-light and electron microscopy.
Curr Opin Struct Biol. 2024 Dec;89:102934. doi: 10.1016/j.sbi.2024.102934. Epub 2024 Oct 3.
2
Electron Transfer Drives the Photosensitized Polymerization of Contrast Agents by Flavoprotein Tags for Correlative Microscopy.
J Am Chem Soc. 2024 Aug 28;146(34):23797-23805. doi: 10.1021/jacs.4c05397. Epub 2024 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验