Zhen Yuqi, Tu Xitao, Zhu Jiajie, Tong Yuanbiao, Liu Lufang, Yao Ni, Wang Pan, Tong Limin, Zhang Lei
State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311121, China.
ACS Appl Mater Interfaces. 2023 Jul 26;15(29):35161-35169. doi: 10.1021/acsami.3c04809. Epub 2023 Jul 16.
Fiber-tip sensors based on the Fabry-Perot interferometer (FPI) are one of the most widely used devices for temperature and pressure measurements in space-confined scenarios. However, the deposited metal films with a polycrystalline structure tend to form microcracks under strain, which can undermine the optical quality factor and thus sensing performance of these fiber-tip sensors. Here, we demonstrate an atomically smooth gold microflake (GMF)-enabled fiber-tip FPI sensor with a factor as high as 628. Benefiting from the high reflectivity and flexibility of GMFs and the elasticity of the PDMS spacer, the fiber-tip FPI can maintain stable sensing performance under large deformation. For temperature sensing, the fiber-tip sensor exhibits a linear response to the temperature in the range 28-40 °C with a sensitivity as high as 1.74 nm °C. To realize linear and sensitive pressure sensing, we design and fabricate a PDMS clamped-beam structure on the fiber tip using a soft lithography technique, achieving a sensitivity of 11.48 nm kPa. Moreover, simultaneous measurement of the temperature and pressure is also demonstrated using the wavelength demodulation method. The simple and cost-effective fabrication of the clamped beam and the transferable GMFs allow for the facile integration of high-quality FP cavities on fiber tips, opening new opportunities for developing optical sensors with miniaturized sizes.
基于法布里-珀罗干涉仪(FPI)的光纤尖端传感器是在空间受限场景中进行温度和压力测量时应用最广泛的器件之一。然而,具有多晶结构的沉积金属膜在应变作用下容易形成微裂纹,这会破坏这些光纤尖端传感器的光学品质因数,进而影响其传感性能。在此,我们展示了一种由原子级光滑的金微薄片(GMF)制成的光纤尖端FPI传感器,其品质因数高达628。得益于GMF的高反射率和柔韧性以及聚二甲基硅氧烷(PDMS)间隔层的弹性,该光纤尖端FPI在大变形情况下仍能保持稳定的传感性能。对于温度传感,该光纤尖端传感器在28 - 40°C范围内对温度呈现线性响应,灵敏度高达1.74 nm/°C。为了实现线性且灵敏的压力传感,我们采用软光刻技术在光纤尖端设计并制作了一个PDMS夹梁结构,灵敏度达到11.48 nm/kPa。此外,还展示了使用波长解调方法同时测量温度和压力。夹梁结构简单且成本效益高,GMF可转移,这使得在光纤尖端轻松集成高质量的FP腔成为可能,为开发小型化光学传感器开辟了新机遇。